As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has ...As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has been developed to address the peculiar needs that arise with quantum systems’ dependable, scalable, and fault-tolerant software development. The present paper critically reviews how traditional software engineering methodologies can be reshaped to fit into the quantum field. This also entails providing some critical contributions: frameworks to integrate classical and quantum systems, new error mitigation techniques, and the development of quantum-specific testing and debugging tools. In this respect, best practices have been recommended to ensure that future quantum software can harness the evolving capabilities of quantum hardware with continued performance, reliability, and scalability. The work is supposed to act as a foundational guide for the researcher and developer as quantum computing approaches widespread scientific and industrial adoption.展开更多
Zero-energy modes localized at the ends of one-dimensional(1D)wires hold great potential as qubits for fault-tolerant quantum computing.However,all the candidates known to date exhibit a wave function that decays expo...Zero-energy modes localized at the ends of one-dimensional(1D)wires hold great potential as qubits for fault-tolerant quantum computing.However,all the candidates known to date exhibit a wave function that decays exponentially into the bulk and hybridizes with other nearby zero-modes,thus hampering their use for braiding operations.Here,we show that a quasi-1D diamond-necklace chain exhibits an unforeseen type of robust boundary state,namely compact localized zero-energy modes that do not decay into the bulk.We find that this state emerges due to the presence of a latent symmetry in the system.We experimentally realize the diamond-necklace chain in an electronic quantum simulator setup.展开更多
文摘As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has been developed to address the peculiar needs that arise with quantum systems’ dependable, scalable, and fault-tolerant software development. The present paper critically reviews how traditional software engineering methodologies can be reshaped to fit into the quantum field. This also entails providing some critical contributions: frameworks to integrate classical and quantum systems, new error mitigation techniques, and the development of quantum-specific testing and debugging tools. In this respect, best practices have been recommended to ensure that future quantum software can harness the evolving capabilities of quantum hardware with continued performance, reliability, and scalability. The work is supposed to act as a foundational guide for the researcher and developer as quantum computing approaches widespread scientific and industrial adoption.
基金financial support from the European Research Council(Horizon 2020“FRACTAL”,865570)the Dutch Research Council(grant 16PR3245)+2 种基金the research program“Materials for the Quantum Age”(QuMat)for financial supportThis program(registration number 024.005.006)is part of the Gravitation program financed by the Dutch Ministry of Education,Culture and Science(OCW)funding provided by Shanghai Jiao Tong University.
文摘Zero-energy modes localized at the ends of one-dimensional(1D)wires hold great potential as qubits for fault-tolerant quantum computing.However,all the candidates known to date exhibit a wave function that decays exponentially into the bulk and hybridizes with other nearby zero-modes,thus hampering their use for braiding operations.Here,we show that a quasi-1D diamond-necklace chain exhibits an unforeseen type of robust boundary state,namely compact localized zero-energy modes that do not decay into the bulk.We find that this state emerges due to the presence of a latent symmetry in the system.We experimentally realize the diamond-necklace chain in an electronic quantum simulator setup.