BACKGROUND Gastric cancer(GC)is a type of cancer which causes high cancer-related mortality.Surgical operation and systematic chemical therapies are primary choices for the treatment of GC patients with advanced stage...BACKGROUND Gastric cancer(GC)is a type of cancer which causes high cancer-related mortality.Surgical operation and systematic chemical therapies are primary choices for the treatment of GC patients with advanced stages,however,the 5-year overall survival is only around 30%.AIM To investigate the role of mesenchymal stem cell(MSC)-derived long non-coding RNAs(lncRNA)NKILA in fatty acid oxidation and chemoresistance in GC cells,mediated through the miR-485-5p/STAT3 pathway.METHODS GC cell lines(AGS and MKN45)were co-cultured with human bone marrowderived MSCs were cultured.The MSC identity was confirmed by flow cytometry(CD73,CD90,CD105>95%positive,CD34,CD45 negative).Co-culture of GC cells and MSCs was performed in Transwell plates,where MSCs were placed in the upper chamber and GC cells in the lower chamber for 72 hours.For transfections,pcDNA-NKILA vectors,shSTAT3,and miR-485-5p mimics were utilized.Colony formation,apoptosis assays(Annexin V/PI staining),sphere formation,and flow cytometry were performed to evaluate cell proliferation,stemness,and chemoresistance.qPCR was used to analyze gene expression(Sox2,Oct4,CD133,LIN28,NKILA),and Western blotting assessed protein levels of stemness markers.Luciferase reporter assays were conducted to confirm miR-485-5p/STAT3 interactions,and biotin-labeled RNA pulldown was used to assess RNA-protein binding.Fatty acid oxidation was evaluated using a CPT1 activity assay andβ-oxidation rate detection.ATP levels were measured to assess the energetic status of GC cells.Clinical GC tissue samples were collected from patients at our hospital for validation.RESULTS MSCs were found to enhance the stemness and chemoresistance of GC cells.Co-culturing MKN45 and AGS cells with MSCs significantly increased sphere-forming ability and the expression of key cancer stem cell markers(SOX2,Oct4,LIN28,CD133),indicating that MSCs promote stem-like properties.Flow cytometry confirmed an enrichment of CD44+and CD133+subpopulations in MSC-treated GC cells.Additionally,MSC co-culture reduced chemotherapy-induced apoptosis and enhanced cell proliferation,suggesting a protective role in chemotherapy resistance.MSC-derived lncRNA NKILA further promoted stemness and chemoresistance,enhancing expression of stem cell markers and protecting cells from oxaliplatin and 5-FU-induced apoptosis.MSC co-culture also induced fatty acid oxidation in GC cells,as shown by increased CPT1 activity,β-oxidation rates,and ATP levels.NKILA mediated these effects by upregulating STAT3,which was confirmed to regulate fatty acid oxidation and chemoresistance.NKILA’s interaction with miR-485-5p further promoted STAT3 expression and fatty acid oxidation,reinforcing its role in maintaining stemness and enhancing chemoresistance.CONCLUSION MSCs enhance the stemness and chemoresistance of GC cells by secreting lncRNA NKILA,which promotes fatty acid oxidation through STAT3 activation.NKILA modulates the miR-485-5p/STAT3 axis,thereby increasing energy metabolism and supporting cancer stem cell properties.Targeting NKILA or the miR-485-5p/STAT3 pathway offers potential therapeutic strategies to overcome chemoresistance in GC.展开更多
This research aims to identify the key fatty acid beta-oxidation(FAO)genes that are altered in kidney renal clear cell carcinoma(KIRC)and to analyze the role of these genes in KIRC The Gene Expression Omnibus(GEO)and ...This research aims to identify the key fatty acid beta-oxidation(FAO)genes that are altered in kidney renal clear cell carcinoma(KIRC)and to analyze the role of these genes in KIRC The Gene Expression Omnibus(GEO)and FAO datasets were used to identify these key genes.Wilcoxon rank sum test was used to assess the levels of acyl-CoA dehydrogenase medium chain(ACADM)between KIRC and non cancer samples.The logistic regression and Wilcoxon rank sum test were used to explore the association between ACADM and clinical features.The diagnostic performance of ACADM for KIRC was asessed using a diagnostic receiver operating ch aracteristic(ROC)curve.The co-expressed genes of ACADM were identifed in LinkedOmics database,and their function and pathway enrichment were analyzed.The correlation between ACADM expression level and immune infitration was analyzed by Gene Set Variation Analysis(GSVA)method Additionally,the proliferation,migration,and invasion abilities of KIRC cells were assessed after overexpressing ACADM.Following differential analysis and intersection,we identifed six hub genes,induding ACADM.We found that the expression level of ACADM was decreased in KIRC tissues and had a better diagnostic efect(AUC=0.916).Survival analysis suggested that patients with decreased ACADM expression had a worse prognosis.According to correlation analysis,a variety of dinical features were associated with the expression level of ACADML By analyzing the infiltration level of immune cells,we found that ACADM may be related to the enrichment of immune cells.Finally,ACADM overexpression inhibited proliferation,migration,and invasion of KIRC cells.In conclusion,our findings suggest that reduced ACADM expression in KIRC patients is indicative of poor prognosis.These results imply that ACADM may be a diagnostic and prognostic marker for individuals with KIRC,offering a reference for dinicians in diagnosis and treatment.展开更多
Pulmonary arterial hypertension(PAH)is a devastating pulmonary circulation disease lacking high-efficiency therapeutics.The present study aims to decipher the therapeutic mechanism of Rhodiola crenulata,a well-known t...Pulmonary arterial hypertension(PAH)is a devastating pulmonary circulation disease lacking high-efficiency therapeutics.The present study aims to decipher the therapeutic mechanism of Rhodiola crenulata,a well-known traditional chinese medicine with cardiopulmonary protection capacity,on PAH by exploiting functional lipidomics.The rat model with PAH was successfully established for first,following Rhodiola crenulata water extract(RCE)treatment,then analysis of chemical constituents of RCE was performed,additional morphologic,hemodynamic,echocardiographic measurements were examined,further targeted lipidomics assay was performed to identify differential lipidomes,at last accordingly mechanism assay was done by combining qRT-PCR,Western blot and ELISA.Differential lipidomes were identified and characterized to differentiate the rats with PAH from healthy controls,mostly assigned to acylcarnitines,phosphatidylcholines,sphingomyelin associated with the PAH development.Excitingly,RCE administration reversed high level of decadienyl-L-carnitine by the modulation of metabolic enzyme CPT1A in mRNA and protein level in serum and lung in the rats with PAH.Furthermore,RCE was observed to reduce autophagy,confirmed by significantly inhibited PPARγ,LC3B,ATG7 and upregulated p62,and inactivated LKB1-AMPK signal pathway.Notably,we accurately identified the constituents in RCE,and delineated the therapeutic mechansim that RCE ameliorated PAH through inhibition of fatty acid oxidation and autophagy.Altogether,RCE might be a potential therapeutic medicine with multi-targets characteristics to prevent the progression of PAH.This novel findings pave a critical foundation for the use of RCE in the treatment of PAH.展开更多
Background: To induce peroxisomal proliferator-activated receptor α(PPARα) expression and increase milk fat utilization in pigs at birth, the effect of maternal feeding of the PPARα agonist, clofibrate(2-(4-ch...Background: To induce peroxisomal proliferator-activated receptor α(PPARα) expression and increase milk fat utilization in pigs at birth, the effect of maternal feeding of the PPARα agonist, clofibrate(2-(4-chlorophenoxy)-2-methyl-propanoic acid, ethyl ester), on fatty acid oxidation was examined at ful-term delivery(0 h) and 24 h after delivery in this study.Each group of pigs(n = 10) was delivered from pregnant sows fed a commercial diet with or without 0.8% clofibrate for the last 7 d of gestation. Blood samples were col ected from the utero-ovarian artery of the sows and the umbilical cords of the pigs as they were removed from the sows by C-section on day 113 of gestation.Results: HPLC analysis identified that clofibric acid was present in the plasma of the clofibrate-fed sow(~4.2 μg/m L)and its offspring(~1.5 μg/m L). Furthermore, the maternal-fed clofibrate had no impact on the liver weight of the pigs at 0 h and 24 h, but hepatic fatty acid oxidation examined in fresh homogenates showed that clofibrate increased(P 〈 0.01)^14C-accumulation in CO2 and acid soluble products 2.9-fold from [1-^14C]-oleic acid and 1.6-fold from[1-^14C]-lignoceric acid respectively. Correspondingly, clofibrate increased fetal hepatic carnitine palmitoyltransferase(CPT)and acyl-Co A oxidase(ACO) activities by 36% and 42% over controls(P 〈 0.036). The m RNA abundance of CPT I was 20-fold higher in pigs exposed to clofibrate(P 〈 0.0001) but no differences were detected for ACO and PPARα m RNA between the two groups.Conclusion: These data demonstrate that dietary clofibrate is absorbed by the sow, crosses the placental membrane, and enters fetal circulation to induce hepatic fatty acid oxidation by increasing the CPT and ACO activities of the newborn.展开更多
BACKGROUND Metabolic reprogramming is a feature of tumour cells and is essential to support their rapid proliferation.The glycolytic activity of liver cancer cells is significantly higher than that of normal liver cel...BACKGROUND Metabolic reprogramming is a feature of tumour cells and is essential to support their rapid proliferation.The glycolytic activity of liver cancer cells is significantly higher than that of normal liver cells,and the rapidly proliferating tumour cells are powered by aerobic glycolysis.Lipid metabolism reprogramming enables tumour cells to meet their needs for highly proliferative growth and is an important driving force for the development of hepatocellular carcinoma(HCC).AIM To explore the influence of different metabolic subtypes of HCC and analyse their significance in guiding prognosis and treatment based on the molecular mechanism of glycolysis and fatty acid oxidation(FAO).METHODS By downloading related data from public databases including the Cancer Genome Atlas(TCGA),the Molecular Signatures Database,and International Cancer Genome Consortium,we utilised unsupervised consensus clustering to divide TCGA Liver Hepatocellular Carcinoma samples into four metabolic subgroups and compared single nucleotide polymorphism,copy number variation,tumour microenvironment,and Genomics of Drug Sensitivity in Cancer and Tumour Immune Dysfunction and Exclusion between different metabolites.The differences and causes of survival and the clinical characteristics between them were analysed,and a prognostic model was established based on glycolysis and FAO genes.Combined with the clinical features,a Norman diagram was created to compare the pros and cons of each model.RESULTS In the four metabolic subgroups,with the increase in glycolytic expression,the median survival of patients showed the worst results,while FAO showed the best.When comparing the follow-up analysis of each group,we considered that the differences between them might be related to reactive oxygen species,somatic copy number variation of key genes,and immune microenvironment.It was also found that the FAO group and the low-risk group had better efficacy and response to immune checkpoint blockade treatment and anti-tumour drugs.CONCLUSION There are obvious differences in genes,chromosomes,and clinical characteristics between metabolic subgroups.The establishment of a prognostic model could predict patient prognosis and guide clinical treatment.展开更多
Fatty acid oxidation(FAO)denotes the mitochondrial aerobic process responsible for breaking down fatty acids(FAs)into acetyl-CoA units.This process holds a central position in the cancer metabolic landscape,with certa...Fatty acid oxidation(FAO)denotes the mitochondrial aerobic process responsible for breaking down fatty acids(FAs)into acetyl-CoA units.This process holds a central position in the cancer metabolic landscape,with certain tumor cells relying primarily on FAO for energy production.Over the past decade,mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth,epigenetic modifications,tissue-immune ho-meostasis,cell signal transduction,and more.FAO is tightly regulated by multiple evolution-arily conserved mechanisms,and any dysregulation can predispose to cancer development.In this view,we summarize recent findings to provide an updated understanding of the multi-faceted roles of FAO in tumor development,metastasis,and the response to cancer therapy.Additionally,we explore the regulatory mechanisms of FAO,laying the groundwork for poten-tial therapeutic interventions targeting FAO in cancers within the metabolic landscape.展开更多
Background Energy deficiency is a leading cause of the high pre-weaning mortality of neonatal piglets in the swine industry.Thus,optimal energy metabolism is of crucial importance for improving the survivability of ne...Background Energy deficiency is a leading cause of the high pre-weaning mortality of neonatal piglets in the swine industry.Thus,optimal energy metabolism is of crucial importance for improving the survivability of neonatal piglets.The effective utilization of milk fat as primary energy is indispensably required.Methods Pregnant sows(n=27)were randomly assigned into 3 treatments.Each treatment received a standard diet(3,265 kcal ME/kg)supplemented with either 0,0.25%or 0.5%clofibrate(w/w)from d 107 of gestation to d 7 of lacta-tion.The effects of maternal clofibrate on their milk fatty acid(FA)and performance of the piglets were evaluated.The evaluations were performed via measuring sow productive performance,milk FA composition,and hepatic FA oxida-tion of the piglets at birth and d 1,7,14 and 19 after birth.Results Maternal supplementation of clofibrate had no effect on reproductive performance of the sows at farrowing and weaning(P>0.05).However,the mortality at weaning was reduced for piglets from sows with 0.25%of clofi-brate,and the average weekly(and daily)gain was higher in piglets from sows that received clofibrate than sows without clofibrate in the first week(P<0.0001).Maternal clofibrate increased percentage of milk C12:0 and C14:0 FAs but decreased C18:2 and n-6 polyunsaturated FAs.Maternal clofibrate also increased plasma ketone body levels and hepatic FA oxidation measured at the first day of birth,but the increase was not detected in piglets on d 7,14 or 19.Clofibrate was not detected in milk collected from the clofibrate-treated sows.The percentage of FA oxidation decreased,and the percentage of FA esterification increased with increasing in postnatal age.Supplemental carni-tine increased FA oxidation regardless of succinate dehydrogenase inhibition,and the increase had no effect on FA esterification.Conclusions Maternal supplementation of clofibrate during late gestation and early lactation increases hepatic FA oxidative metabolism at birth and improves growth performance of newborn piglets.Maternal clofibrate transfer to suckling piglets via milk was not detected.Carnitine availability is critical for piglets to maintain a high FA oxidation rate during the suckling period.展开更多
Background: Betaine affects fat metabolism in animals, but the specific mechanism is still not clear. The purpose of this study was to investigate possible mechanisms of betaine in altering lipid metabolism in muscle...Background: Betaine affects fat metabolism in animals, but the specific mechanism is still not clear. The purpose of this study was to investigate possible mechanisms of betaine in altering lipid metabolism in muscle tissue in finishing pigs.Methods: A total of 120 crossbred gilts(Landrace × Yorkshire × Duroc) with an average initial body weight of 70.1 kg were randomly allotted to three dietary treatments. The treatments included a corn–soybean meal basal diet supplemented with 0, 1250 or 2500 mg/kg betaine. The feeding experiment lasted 42 d.Results: Betaine addition to the diet significantly increased the concentration of free fatty acids(FFA) in muscle(P 〈 0.05). Furthermore, the levels of serum cholesterol and high-density lipoprotein cholesterol were decreased(P 〈 0.05) and total cholesterol content was increased in muscle(P 〈 0.05) of betaine fed pigs. Experiments on genes involved in fatty acid transport showed that betaine increased expression of lipoprotein lipase(LPL), fatty acid translocase/cluster of differentiation(FAT/CD36), fatty acid binding protein(FABP3) and fatty acid transport protein(FATP1)(P 〈 0.05). The abundance of fatty acid transport protein and fatty acid binding protein were also increased by betaine(P 〈 0.05). As for the key factors involved in fatty acid oxidation, although betaine supplementation didn't affect the level of carnitine and malonyl-CoA, betaine increased mR NA and protein abundance of carnitine palmitransferase-1(CPT1)and phosphorylated-AMPK(P 〈 0.05).Conclusions: The results suggested that betaine may promoted muscle fatty acid uptake via up-regulating the genes related to fatty acid transporter including FAT/CD36, FATP1 and FABP3. On the other hand, betaine activated AMPK and up-regulated genes related to fatty acid oxidation including PPARα and CPT1. The underlying mechanism regulating fatty acid metabolism in pigs supplemented with betaine is associated with the up-regulation of genes involved in fatty acid transport and fatty acid oxidation.展开更多
Background:Fatty acid oxidation(FAO)disorder is involved in the pathogenesis of some cases of preeclampsia(PE).Several show that mammalian target of rapamycin(mTOR)signaling pathway is related to FAO.Pravastatin(Pra)c...Background:Fatty acid oxidation(FAO)disorder is involved in the pathogenesis of some cases of preeclampsia(PE).Several show that mammalian target of rapamycin(mTOR)signaling pathway is related to FAO.Pravastatin(Pra)can promote FAO in Nio-nitro-L-arginine methyl ester(L-NAME)PE-like mouse model in our previous study.This study aimed to investigate the effect of mTOR signaling pathway in PE-like model treated with Pra.Methods:Pregnant mice were randomly injected with L-NAME as PE-like model group or saline as control group respectively,from gestational 7th to 18th day.Giving Pra(L-NAME+Pra,Control+Pra,n=8)or normal saline(NS;L-NAME+NS,Control+NS,n=8)from gestational 8th to 18th day,the mice were sacrificed on day 18 and their liver and placental tissues were collected.Then the activation of mTOR and its substrates in the liver and placenta were detected.And the association between mTOR activation and mice were randomly injected with L-NAME as PE-like model group or saline as control group respectively,from serum free fatty acid(FFA)levels and the expression of long-chain 3-hydroxyacyl-coenzyme A dehydrogenase(LCHAD)were evaluated using Pearson correlation test.Differences between groups were analyzed using independent t-test or one-way analysis of variance(ANOVA).Results:Both in the maternal liver and placenta,the activation of mTOR protein and its effect on substrates increased significantly in the L-NAME+NS group and decreased significantly in the L-NAME+Pra group.The p-mTOR/mTOR protein ratio decreased in the L-NAME+Pra group significantly than that in the L-NAME+NS group both in liver and placenta(liver:0.74±0.08 vs.0.85±0.06,t=2.95,P<0.05;placenta:0.63±0.06 vs.0.77±0.06,t=4.64,P<0.05).The activation of mTOR protein in the liver and placenta negatively correlated with the expression of LCHAD in the L-NAME+NS group(liver:r=—0.745,P<0.05;placenta:r=-0.833,P<0.05)and that in the maternal liver negatively correlated with the expression of LCHAD(r=—0.733,P<0.05)and serum FFA levels positively with the(r=0.841,P<0.05)in the L-NAME+Pra group.Conclusion:The inhibition of mTOR signaling pathway might be involved in the regulation of FAO in mouse model treated with Pra.展开更多
Background Preeclampsia is one of hypertensive disorders in pregnancy. It is associated with abnormal lipid metabolism, including fatty acid oxidation metabolism. Long chain 3-hydroxyacyI-CoA dehydrogenase (LCHAD) p...Background Preeclampsia is one of hypertensive disorders in pregnancy. It is associated with abnormal lipid metabolism, including fatty acid oxidation metabolism. Long chain 3-hydroxyacyI-CoA dehydrogenase (LCHAD) plays an indispensable role in the oxidation of fatty acids. It has been reported that nitric oxide (NO) is one of the regulatory factors of the fatty acid oxidation pathway. The aim of this research was to investigate whether the nitric oxide synthase (NOS)inhibitor L-NAME may cause down-regulation of LCHAD in the pathogenesis of preeclampsia.Methods Pregnant wild-type (WT) mice were treated with L-NAME or normal saline (NS) during gestation days 7-18 (early group), days 11-18 (mid group) and days 16-18 (late group), and apoE-/- mice served as a control. Systolic blood pressure (SBP), urine protein, feto-placental outcome, plasma lipid levels and NO concentrations were measured, and the expression of mRNA and protein for LCHAD in placental tissue were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting, respectively.Results In WT and apoE-/- mice, SBP and urinary protein increased following L-NAME injection. Fetal and placental weights and NO concentrations were reduced and total cholesterol, triglycerides and free fatty acid levels were increased in early and mid L-NAME groups in WT and apoE-/- mice, compared with the NS group. There was no significant difference between the late L-NAME group and NS group. RT-PCR and Western blotting analysis showed that the mRNA and protein levels of LCHAD expression were significantly down-regulated in the early and mid L-NAME groups but not in the late L-NAME group in the WT and apoE-/- mice compared with the corresponding NS groups.Conclusions Inhibition of NO in early and mid gestation in mice may cause hyperlipidemia and suppression of fatty acid oxidation, whereas preeclampsia-like conditions in late gestation may be a maternal vascular response to inhibition of NO.展开更多
Tamoxifen(TAM)is the first-line endocrine therapy for estrogen receptor-positive(ER+)breast cancer(BC).However,acquired resistance occurs in∼50%cases.Meanwhile,although the PI3K/AKT/mTOR pathway is a viable target fo...Tamoxifen(TAM)is the first-line endocrine therapy for estrogen receptor-positive(ER+)breast cancer(BC).However,acquired resistance occurs in∼50%cases.Meanwhile,although the PI3K/AKT/mTOR pathway is a viable target for treatment of endocrine therapy-refractory patients,complex signaling feedback loops exist,which can counter the effectiveness of inhibitors of this pathway.Here,we analyzed signaling pathways and metabolism in ER+MCF7 BC cell line and their TAM-resistant derivatives that are co-resistant to endoxifen using immunoblotting,quantitative polymerase chain reaction,and the Agilent Seahorse XF Analyzer.We found that activation of AKT and the energy-sensing kinase AMPK was increased in TAM and endoxifen-resistant cells.Furthermore,ERRα/PGC-1βand their target genes MCAD and CPT-1 were increased and regulated by AMPK,which coincided with increased fatty acid oxidation(FAO)and autophagy in TAM-resistant cells.Inhibition of AKT feedback-activates AMPK and ERRα/PGC-1β-MCAD/CPT-1 with a consequent increase in FAO and autophagy that counters the therapeutic effect of endoxifen and AKT inhibitors.Therefore,our results indicate increased activation of AKT and AMPK with metabolic reprogramming and increased autophagy in TAM-resistant cells.Simultaneous inhibition of AKT and FAO/autophagy is necessary to fully sensitize resistant cells to endoxifen.展开更多
To investigate whether increasing tricarboxylic acid(TCA)cycle activity and ketogenic capacity would augment fatty acid(FA)oxidation induced by the peroxisome proliferator-activated receptor-alpha(PPARα)agonist clofi...To investigate whether increasing tricarboxylic acid(TCA)cycle activity and ketogenic capacity would augment fatty acid(FA)oxidation induced by the peroxisome proliferator-activated receptor-alpha(PPARα)agonist clofibrate,suckling newborn piglets(n=54)were assigned to 8 groups following a 2(±clofibrate)×4(glycerol succinate[SUC],triglycerides of 2-methylpentanoic acid[T2M],valeric acid[TC5]and hexanoic acid[TC6])factorial design.Each group was fed an isocaloric milk formula containing either 0%or 0.35%clofibrate(wt/wt,dry matter basis)with 5%SUC,T2M,TC5 or TC6 for 5 d.Another 6 pigs served as newborn controls.Fatty acid oxidation was examined in fresh homogenates of liver collected on d 6 using[1-^(14)C]palmitic acid(1 mM)as a substrate(0.265μCi/μmol).Measurements were performed in the absence or presence of L-carnitine(1 mM)or inhibitors of 3-hydroxy-3-methylglutaryl-CoA synthase(L659699,1.6μM)or acetoacetate-CoA deacylase(iodoacetamide,50μM).Without clofibrate stimulation,^(14)C accumulation in CO_(2) was higher from piglets fed diets containing T2M and TC5 than SUC,but similar to those fed TC6.Under clofibrate stimulation,accumulation also was higher in homogenates from piglets fed TC5 than all other dietary treatments.Interactions between clofibrate and carnitine or the inhibitors were observed(P=0.0004)for acid soluble products(ASP).In vitro addition of carnitine increased^(14)C-ASP(P<0.0001)above all other treatments,regardless of clofibrate treatment.The percentage of^(14)C in CO_(2) was higher(P=0.0023)in TC5 than in the control group.From these results we suggest that dietary supplementation of anaplerotic and ketogenic FA could impact FA oxidation and modify the metabolism of acetyl-CoA(product ofβ-oxidation)via alteration of TCA cycle activity,but the modification has no significant impact on the hepatic FA oxidative capacity induced by PPARα.In addition,the availability of carnitine is a critical element to maintain FA oxidation during the neonatal period.展开更多
The oxidation of polyunsaturated fatty acids (PUFA) in emulsion with stirring and limited oxygen compensation was studied. A mathematical model of diffusion-oxidation was developed considering the mass transfer resi...The oxidation of polyunsaturated fatty acids (PUFA) in emulsion with stirring and limited oxygen compensation was studied. A mathematical model of diffusion-oxidation was developed considering the mass transfer resistance of a gas-liquid boundary, the resistance of the boundary layer from the emulsifier membrane, and the autocatalytic-type autoxidation reaction of PUFA. The dynamic mass transfer coefficient of the emulsifier membrane, k0, was introduced. The model was verified by comparing the predictions of the model with the experi- mental data. The results indicated that the model was in good agreement with the oxygen diffusion and linoleic acid oxidation in the emulsion, and showed good applicability in the prediction of the effect of the emulsifier type on the oxidation of PUFA in the emulsion. It indicated that the oxidation of PUFA in emulsions, with stirring and limited oxygen compensation from the atmosphere, was controlled mostly by mass transfer resistance from the emulsifier membrane.展开更多
Background: Fat is the primary source of the volatiles that determine the characteristic flavors of animal products.Because unsaturated fatty acids(UFAs) contribute to changes in flavor as a result of the oxidation...Background: Fat is the primary source of the volatiles that determine the characteristic flavors of animal products.Because unsaturated fatty acids(UFAs) contribute to changes in flavor as a result of the oxidation process, a feeding trial was performed to investigate the effects of dietary soybean oil or antioxidants on the fatty acid and volatile profiles of the tail subcutaneous(SF) and perirenal fat tissues(PF) of fattening lambs. Thirty-six Huzhou lambs were assigned to four dietary treatments in a randomized block design. The lambs' diets were supplemented with soybean oil(0 or 3 % of DM) or antioxidants(0 or 0.025 % of DM).Results: Neither soybean oil nor antioxidant supplementation had an effect on lamb growth(P 〉 0.05). In regard to tail SF, soybean oil supplementation increased the 18:2n6t(P 〈 0.05) and the total amount of volatile acids,whereas antioxidant supplementation increased the content of C18:2n6c and C18:3n3(P 〈 0.05) but had no effect on the volatiles profile. In regard to PF, dietary soybean oil supplementation increased the C18:0 content(P 〈 0.01);decreased the C18:1(P = 0.01), C22:1 n9(P 〈 0.01) and total UFA(P = 0.03) contents; and tended to decrease the E-2-octenal(P = 0.08), E, E-2, 4-decadienal(P = 0.10), 2-undecenal(P = 0.14) and ethyl 9-decenoate(P = 0.10) contents.Antioxidant supplementation did not affect either the fatty acid content or the volatiles profile in the PF.Conclusions: Tail SF and PF responded to dietary soybean oil and antioxidant supplementation in different ways. For SF, both soybean oil and antioxidant supplementation increased the levels of unsaturated fatty acids but triggered only a slight change in volatiles. For PF, soybean oil supplementation decreased the levels of unsaturated fatty acids and oxidative volatiles, but supplementation with antioxidants had little effect on PF fatty acids and the volatiles profile.展开更多
Objective:To investigate the effects of Alpiniae oxyphyllae Fructus(AOF)on renal lipid deposition in diabetic kidney disease(DKD)and elucidate its molecular mechanisms.Methods:The mechanism of AOF in treating DKD was ...Objective:To investigate the effects of Alpiniae oxyphyllae Fructus(AOF)on renal lipid deposition in diabetic kidney disease(DKD)and elucidate its molecular mechanisms.Methods:The mechanism of AOF in treating DKD was explored by network pharmacological enrichment analysis,molecular docking,and molecular dynamics simulation.The effects of AOF on renal function and lipid deposition were assessed in a mouse model of DKD and high glucose-stressed HK-2 cells.Cell viability and lipid accumulation were detected by CCK8 and oil red O staining.The expressions of PPARαand fatty acid oxidation-related genes(ACOX1 and CPT1A)were detected by quantitative RT-PCR,Western blot,and immunofluorescence.Furthermore,PPARαknockdown was performed to examine the molecular mechanism of AOF in treating DKD.Results:Network pharmacological enrichment analysis,molecular docking,and molecular dynamics simulation showed that the active compounds in AOF targeted PPARαand thus transcriptionally regulated ACOX1 and CPT1A.AOF lowered blood glucose,improved dyslipidemia,and attenuated renal injury in DKD mice.AOF-containing serum accentuated high glucose-induced decrease in cell viability and ameliorated lipid accumulation.Additionally,it significantly upregulated the expression of PPARα,ACOX1,and CPT1A in both in vivo and in vitro experiments,which was reversed by PPARαknockdown.Conclusions:AOF may promote fatty acid oxidation via PPARαto ameliorate renal lipid deposition in DKD.展开更多
Nonalcoholic fatty liver disease (NAFLD) includes hepatic steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. NAFLD is the most common liver disorder in the United States and worldwide. Due to the...Nonalcoholic fatty liver disease (NAFLD) includes hepatic steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. NAFLD is the most common liver disorder in the United States and worldwide. Due to the rapid rise of the metabolic syndrome, the prevalence of NAFLD has recently dramatically increased and will continue to increase. NAFLD has also the potential to progress to hepatocellular carcinoma (HCC) or liver failure. NAFLD is strongly linked to caloric overconsumption, physical inactivity, insulin resistance and genetic factors. Although significant progress in understanding the pathogenesis of NAFLD has been achieved in years, the primary metabolic abnormalities leading to lipid accumulation within hepatocytes has remained poorly understood. Mitochondria are critical metabolic organelles serving as "cellular power plants". Accumulating evidence indicate that hepatic mitochondrial dysfunction is crucial to the pathogenesis of NAFLD. This review is focused on the significant role of mitochondria in the development of NAFLD.展开更多
Alstonia scholaris(L.)R.Br(Apocynaceae)is a well-documented medicinal plant for treating respiratory diseases,liver diseases and diabetes traditionally.The current study aimed to investigate the effects of TA on non-a...Alstonia scholaris(L.)R.Br(Apocynaceae)is a well-documented medicinal plant for treating respiratory diseases,liver diseases and diabetes traditionally.The current study aimed to investigate the effects of TA on non-alcoholic fatty liver disease(NAFLD).A NAFLD model was established using mice fed a high-fat diet(HFD)and administered with TA(7.5,15 and 30 mg/kg)orally for 6 weeks.The biochemical parameters,expressions of lipid metabolism-related genes or proteins were analyzed.Furthermore,histopathological examinations were evaluated with Hematoxylin-Eosin and MASSON staining.TA treatment significantly decreased the bodyweight of HFD mice.The concentrations of low-density lipoprotein(LDL),triglyceride(TG),aspartate aminotransferase(AST)and alanine aminotransferase(ALT)were also decreased significantly in TA-treated mice group,accompanied by an increase in high-density lipoprotein(HDL).Furthermore,TA alleviated hepatic steatosis injury and lipid droplet accumulation of liver tissues.The liver mRNA levels involved in hepatic lipid synthesis such as sterol regulatory element-binding protein 1C(SREBP-1C),regulators of liver X receptorα(LXRα),peroxisome proliferator activated receptor(PPAR)γ,acetyl-CoA carboxylase(ACC1)and stearyl coenzyme A dehydrogenase-1(SCD1),were markedly decreased,while the expressions involved in the regulation of fatty acid oxidation,PPARα,carnitine palmitoyl transterase 1(CPT1A),and acyl coenzyme A oxidase 1(ACOX1)were increased in TA-treated mice.TA might attenuate NAFLD by regulating hepatic lipogenesis and fatty acid oxidation.展开更多
Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generat...Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.展开更多
Intestinal stem cells(ISCs)initiate intestinal epithelial regeneration and tumorigenesis,and they experi-ence rapid refilling upon various injuries for epithelial repair as well as tumor reoccurrence.It is crucial to ...Intestinal stem cells(ISCs)initiate intestinal epithelial regeneration and tumorigenesis,and they experi-ence rapid refilling upon various injuries for epithelial repair as well as tumor reoccurrence.It is crucial to reveal the mechanism underlying such plasticity for intestinal health.Recent studies have found that metabolic pathways control stem cell fate in homeostasis,but the role of metabolism in the regeneration of ISCs after damage has not been clarified.Here,we find that in a human colorectal cancer dataset,miR-29a and b(miR-29a/b)are metabolic regulators highly associated with intestinal tumorigenesis and worse prognostic value of radiotherapy.We also show that these two microRNAs are required for intesti-nal stemness maintenance in mice,and their expression is induced in regenerated ISCs after irradiation injury,resulting in skewed ISC fate from differentiation towards self-renewal.This upregulation of miR-29a/b expression in ISCs leads to suppression of fatty acid oxidation(FAO)and depression of oxidative phosphorylation,which in turn controls the balance between self-renewal and differentiation of ISCs.Deletion of miR-29a/b prevents these effects and thus impairs ISC-mediated epithelial recovery.Finally,we filter the potential targets of miR-29a/b and identify Hnf4g,a transcription factor,that drives this metabolic reprogramming through regulating FAO-related enzymes.Our work discovers an impor-tant metabolic mechanism of ISC-mediated regeneration and potentially pave the way for more targeted and effective therapeutic strategies for intestinal repair as well as tumor treatment.展开更多
Background and objective Metabolic associated fatty liver disease(MAFLD)is associated with abnormal lipid metabolism.Mitochondrial dysfunction is considered an important factor in the onset of MAFLD,whereas altered fa...Background and objective Metabolic associated fatty liver disease(MAFLD)is associated with abnormal lipid metabolism.Mitochondrial dysfunction is considered an important factor in the onset of MAFLD,whereas altered fatty acid composition has been linked to the severity of the disease.Tetradecylthioacetic acid(TTA),shown to induce mitochondrial proliferation and alter the fatty acid composition,was used to delay the accumulation of hepatic triacylglycerol.This study aimed to evaluate how impaired mitochondrial fatty acid beta-oxidation affects fatty acid composition by incorporating meldonium into a high-carbohydrate diet.Methods C57BL/6 mice(n=40)were fed high-carbohydrate diets supplemented with meldonium,TTA,or a combination of meldonium and TTA for 21 days.Lipid levels were determined in liver samples,and fatty acid composition was measured in both liver and plasma samples.Additionally,desaturase and elongase activities were estimated.The hepatic activities and gene expression levels of enzymes involved in fatty acid metabolism were measured in liver samples,whereas carnitines,their precursors,and acylcarnitines were measured in plasma samples.Results The meldonium-induced depletion of L-carnitine and mitochondrial fatty acid oxidation was confirmed by reduced plasma levels of L-carnitine and acylcarnitines.Principal component analyses of the hepatic fatty acid composition revealed clustering dependent on meldonium and TTA.The meldonium-induced increase in hepatic triacylglycerol levels correlated negatively with estimated activities of elongases and was associated with higher estimated activities of delta-6 desaturase(D6D;C18:4n-3/C18:3n-3 and C18:3n-6/C18:2n-6),and increased circulating levels of C18:4n-3 and C18:3n-6(gamma-linolenic acid).TTA mitigated meldonium-induced triacylglycerol levels by 80%and attenuated the estimated D6D activities,and elongation of n-6 polyunsaturated fatty acids(PUFAs).TTA also attenuated the meldonium-mediated reduction of C24:1n-9(nervonic acid),possibly by stimulating Elovl5 and increased elongation of erucic acid(C22:1n-9)to nervonic acid.The hepatic levels of nervonic acid and the estimated activity of n-6 PUFA elongation correlated negatively with the hepatic triacylglycerol levels,while the estimated activities of D6D correlated positively.Conclusion Circulating levels of gamma-linolenic acid,along with reduced estimated elongation of n-6 PUFAs and D6D desaturation activities,were associated with hepatic triacylglycerol levels.展开更多
文摘BACKGROUND Gastric cancer(GC)is a type of cancer which causes high cancer-related mortality.Surgical operation and systematic chemical therapies are primary choices for the treatment of GC patients with advanced stages,however,the 5-year overall survival is only around 30%.AIM To investigate the role of mesenchymal stem cell(MSC)-derived long non-coding RNAs(lncRNA)NKILA in fatty acid oxidation and chemoresistance in GC cells,mediated through the miR-485-5p/STAT3 pathway.METHODS GC cell lines(AGS and MKN45)were co-cultured with human bone marrowderived MSCs were cultured.The MSC identity was confirmed by flow cytometry(CD73,CD90,CD105>95%positive,CD34,CD45 negative).Co-culture of GC cells and MSCs was performed in Transwell plates,where MSCs were placed in the upper chamber and GC cells in the lower chamber for 72 hours.For transfections,pcDNA-NKILA vectors,shSTAT3,and miR-485-5p mimics were utilized.Colony formation,apoptosis assays(Annexin V/PI staining),sphere formation,and flow cytometry were performed to evaluate cell proliferation,stemness,and chemoresistance.qPCR was used to analyze gene expression(Sox2,Oct4,CD133,LIN28,NKILA),and Western blotting assessed protein levels of stemness markers.Luciferase reporter assays were conducted to confirm miR-485-5p/STAT3 interactions,and biotin-labeled RNA pulldown was used to assess RNA-protein binding.Fatty acid oxidation was evaluated using a CPT1 activity assay andβ-oxidation rate detection.ATP levels were measured to assess the energetic status of GC cells.Clinical GC tissue samples were collected from patients at our hospital for validation.RESULTS MSCs were found to enhance the stemness and chemoresistance of GC cells.Co-culturing MKN45 and AGS cells with MSCs significantly increased sphere-forming ability and the expression of key cancer stem cell markers(SOX2,Oct4,LIN28,CD133),indicating that MSCs promote stem-like properties.Flow cytometry confirmed an enrichment of CD44+and CD133+subpopulations in MSC-treated GC cells.Additionally,MSC co-culture reduced chemotherapy-induced apoptosis and enhanced cell proliferation,suggesting a protective role in chemotherapy resistance.MSC-derived lncRNA NKILA further promoted stemness and chemoresistance,enhancing expression of stem cell markers and protecting cells from oxaliplatin and 5-FU-induced apoptosis.MSC co-culture also induced fatty acid oxidation in GC cells,as shown by increased CPT1 activity,β-oxidation rates,and ATP levels.NKILA mediated these effects by upregulating STAT3,which was confirmed to regulate fatty acid oxidation and chemoresistance.NKILA’s interaction with miR-485-5p further promoted STAT3 expression and fatty acid oxidation,reinforcing its role in maintaining stemness and enhancing chemoresistance.CONCLUSION MSCs enhance the stemness and chemoresistance of GC cells by secreting lncRNA NKILA,which promotes fatty acid oxidation through STAT3 activation.NKILA modulates the miR-485-5p/STAT3 axis,thereby increasing energy metabolism and supporting cancer stem cell properties.Targeting NKILA or the miR-485-5p/STAT3 pathway offers potential therapeutic strategies to overcome chemoresistance in GC.
基金the National Natural Science Foundation of China(Grant Nos.82072816 and 81672553)the Natural Science Foundation of Shandong Province(Grant No.ZR2021LZY003).
文摘This research aims to identify the key fatty acid beta-oxidation(FAO)genes that are altered in kidney renal clear cell carcinoma(KIRC)and to analyze the role of these genes in KIRC The Gene Expression Omnibus(GEO)and FAO datasets were used to identify these key genes.Wilcoxon rank sum test was used to assess the levels of acyl-CoA dehydrogenase medium chain(ACADM)between KIRC and non cancer samples.The logistic regression and Wilcoxon rank sum test were used to explore the association between ACADM and clinical features.The diagnostic performance of ACADM for KIRC was asessed using a diagnostic receiver operating ch aracteristic(ROC)curve.The co-expressed genes of ACADM were identifed in LinkedOmics database,and their function and pathway enrichment were analyzed.The correlation between ACADM expression level and immune infitration was analyzed by Gene Set Variation Analysis(GSVA)method Additionally,the proliferation,migration,and invasion abilities of KIRC cells were assessed after overexpressing ACADM.Following differential analysis and intersection,we identifed six hub genes,induding ACADM.We found that the expression level of ACADM was decreased in KIRC tissues and had a better diagnostic efect(AUC=0.916).Survival analysis suggested that patients with decreased ACADM expression had a worse prognosis.According to correlation analysis,a variety of dinical features were associated with the expression level of ACADML By analyzing the infiltration level of immune cells,we found that ACADM may be related to the enrichment of immune cells.Finally,ACADM overexpression inhibited proliferation,migration,and invasion of KIRC cells.In conclusion,our findings suggest that reduced ACADM expression in KIRC patients is indicative of poor prognosis.These results imply that ACADM may be a diagnostic and prognostic marker for individuals with KIRC,offering a reference for dinicians in diagnosis and treatment.
基金the National Natural Science Foundation of China(No.81302764)the Science and Technology Grant for Excellent Talents of Harbin(No.2017RAXXJ-060).
文摘Pulmonary arterial hypertension(PAH)is a devastating pulmonary circulation disease lacking high-efficiency therapeutics.The present study aims to decipher the therapeutic mechanism of Rhodiola crenulata,a well-known traditional chinese medicine with cardiopulmonary protection capacity,on PAH by exploiting functional lipidomics.The rat model with PAH was successfully established for first,following Rhodiola crenulata water extract(RCE)treatment,then analysis of chemical constituents of RCE was performed,additional morphologic,hemodynamic,echocardiographic measurements were examined,further targeted lipidomics assay was performed to identify differential lipidomes,at last accordingly mechanism assay was done by combining qRT-PCR,Western blot and ELISA.Differential lipidomes were identified and characterized to differentiate the rats with PAH from healthy controls,mostly assigned to acylcarnitines,phosphatidylcholines,sphingomyelin associated with the PAH development.Excitingly,RCE administration reversed high level of decadienyl-L-carnitine by the modulation of metabolic enzyme CPT1A in mRNA and protein level in serum and lung in the rats with PAH.Furthermore,RCE was observed to reduce autophagy,confirmed by significantly inhibited PPARγ,LC3B,ATG7 and upregulated p62,and inactivated LKB1-AMPK signal pathway.Notably,we accurately identified the constituents in RCE,and delineated the therapeutic mechansim that RCE ameliorated PAH through inhibition of fatty acid oxidation and autophagy.Altogether,RCE might be a potential therapeutic medicine with multi-targets characteristics to prevent the progression of PAH.This novel findings pave a critical foundation for the use of RCE in the treatment of PAH.
文摘Background: To induce peroxisomal proliferator-activated receptor α(PPARα) expression and increase milk fat utilization in pigs at birth, the effect of maternal feeding of the PPARα agonist, clofibrate(2-(4-chlorophenoxy)-2-methyl-propanoic acid, ethyl ester), on fatty acid oxidation was examined at ful-term delivery(0 h) and 24 h after delivery in this study.Each group of pigs(n = 10) was delivered from pregnant sows fed a commercial diet with or without 0.8% clofibrate for the last 7 d of gestation. Blood samples were col ected from the utero-ovarian artery of the sows and the umbilical cords of the pigs as they were removed from the sows by C-section on day 113 of gestation.Results: HPLC analysis identified that clofibric acid was present in the plasma of the clofibrate-fed sow(~4.2 μg/m L)and its offspring(~1.5 μg/m L). Furthermore, the maternal-fed clofibrate had no impact on the liver weight of the pigs at 0 h and 24 h, but hepatic fatty acid oxidation examined in fresh homogenates showed that clofibrate increased(P 〈 0.01)^14C-accumulation in CO2 and acid soluble products 2.9-fold from [1-^14C]-oleic acid and 1.6-fold from[1-^14C]-lignoceric acid respectively. Correspondingly, clofibrate increased fetal hepatic carnitine palmitoyltransferase(CPT)and acyl-Co A oxidase(ACO) activities by 36% and 42% over controls(P 〈 0.036). The m RNA abundance of CPT I was 20-fold higher in pigs exposed to clofibrate(P 〈 0.0001) but no differences were detected for ACO and PPARα m RNA between the two groups.Conclusion: These data demonstrate that dietary clofibrate is absorbed by the sow, crosses the placental membrane, and enters fetal circulation to induce hepatic fatty acid oxidation by increasing the CPT and ACO activities of the newborn.
基金Supported by the Project of National Natural Science Foundation of China,No.81802365 and 81802385the Special Project of Clinical Key Diseases Treatment Technology in Suzhou,No.LCZX2019003+2 种基金the City-Level Scientific Research Projects in Jiangsu Province,No.SLT201907Major Projects of Provincial Universities in Jiangsu Province,No.19KJA170002Soochow University Horizontal Research Project,No.H190168.
文摘BACKGROUND Metabolic reprogramming is a feature of tumour cells and is essential to support their rapid proliferation.The glycolytic activity of liver cancer cells is significantly higher than that of normal liver cells,and the rapidly proliferating tumour cells are powered by aerobic glycolysis.Lipid metabolism reprogramming enables tumour cells to meet their needs for highly proliferative growth and is an important driving force for the development of hepatocellular carcinoma(HCC).AIM To explore the influence of different metabolic subtypes of HCC and analyse their significance in guiding prognosis and treatment based on the molecular mechanism of glycolysis and fatty acid oxidation(FAO).METHODS By downloading related data from public databases including the Cancer Genome Atlas(TCGA),the Molecular Signatures Database,and International Cancer Genome Consortium,we utilised unsupervised consensus clustering to divide TCGA Liver Hepatocellular Carcinoma samples into four metabolic subgroups and compared single nucleotide polymorphism,copy number variation,tumour microenvironment,and Genomics of Drug Sensitivity in Cancer and Tumour Immune Dysfunction and Exclusion between different metabolites.The differences and causes of survival and the clinical characteristics between them were analysed,and a prognostic model was established based on glycolysis and FAO genes.Combined with the clinical features,a Norman diagram was created to compare the pros and cons of each model.RESULTS In the four metabolic subgroups,with the increase in glycolytic expression,the median survival of patients showed the worst results,while FAO showed the best.When comparing the follow-up analysis of each group,we considered that the differences between them might be related to reactive oxygen species,somatic copy number variation of key genes,and immune microenvironment.It was also found that the FAO group and the low-risk group had better efficacy and response to immune checkpoint blockade treatment and anti-tumour drugs.CONCLUSION There are obvious differences in genes,chromosomes,and clinical characteristics between metabolic subgroups.The establishment of a prognostic model could predict patient prognosis and guide clinical treatment.
文摘Fatty acid oxidation(FAO)denotes the mitochondrial aerobic process responsible for breaking down fatty acids(FAs)into acetyl-CoA units.This process holds a central position in the cancer metabolic landscape,with certain tumor cells relying primarily on FAO for energy production.Over the past decade,mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth,epigenetic modifications,tissue-immune ho-meostasis,cell signal transduction,and more.FAO is tightly regulated by multiple evolution-arily conserved mechanisms,and any dysregulation can predispose to cancer development.In this view,we summarize recent findings to provide an updated understanding of the multi-faceted roles of FAO in tumor development,metastasis,and the response to cancer therapy.Additionally,we explore the regulatory mechanisms of FAO,laying the groundwork for poten-tial therapeutic interventions targeting FAO in cancers within the metabolic landscape.
基金Animal Nutrition,Growth and Lactation(grant no.2015–67015-23245/project accession no.1005855)Animal Health and Production and Animal Products(grant no.2023–67015-39663/1030033)from the USDA National Institute of Food and AgricultureNorth Carolina Agricultural Research Hatch projects 1016618 and 02780.
文摘Background Energy deficiency is a leading cause of the high pre-weaning mortality of neonatal piglets in the swine industry.Thus,optimal energy metabolism is of crucial importance for improving the survivability of neonatal piglets.The effective utilization of milk fat as primary energy is indispensably required.Methods Pregnant sows(n=27)were randomly assigned into 3 treatments.Each treatment received a standard diet(3,265 kcal ME/kg)supplemented with either 0,0.25%or 0.5%clofibrate(w/w)from d 107 of gestation to d 7 of lacta-tion.The effects of maternal clofibrate on their milk fatty acid(FA)and performance of the piglets were evaluated.The evaluations were performed via measuring sow productive performance,milk FA composition,and hepatic FA oxida-tion of the piglets at birth and d 1,7,14 and 19 after birth.Results Maternal supplementation of clofibrate had no effect on reproductive performance of the sows at farrowing and weaning(P>0.05).However,the mortality at weaning was reduced for piglets from sows with 0.25%of clofi-brate,and the average weekly(and daily)gain was higher in piglets from sows that received clofibrate than sows without clofibrate in the first week(P<0.0001).Maternal clofibrate increased percentage of milk C12:0 and C14:0 FAs but decreased C18:2 and n-6 polyunsaturated FAs.Maternal clofibrate also increased plasma ketone body levels and hepatic FA oxidation measured at the first day of birth,but the increase was not detected in piglets on d 7,14 or 19.Clofibrate was not detected in milk collected from the clofibrate-treated sows.The percentage of FA oxidation decreased,and the percentage of FA esterification increased with increasing in postnatal age.Supplemental carni-tine increased FA oxidation regardless of succinate dehydrogenase inhibition,and the increase had no effect on FA esterification.Conclusions Maternal supplementation of clofibrate during late gestation and early lactation increases hepatic FA oxidative metabolism at birth and improves growth performance of newborn piglets.Maternal clofibrate transfer to suckling piglets via milk was not detected.Carnitine availability is critical for piglets to maintain a high FA oxidation rate during the suckling period.
基金funded and supported by National Basic Research Program of China(No.2012CB124705)Zhejiang Provincial Key Research and Development Program(2015C03006)Provincial Key S&T Special Projects(2015C02022)
文摘Background: Betaine affects fat metabolism in animals, but the specific mechanism is still not clear. The purpose of this study was to investigate possible mechanisms of betaine in altering lipid metabolism in muscle tissue in finishing pigs.Methods: A total of 120 crossbred gilts(Landrace × Yorkshire × Duroc) with an average initial body weight of 70.1 kg were randomly allotted to three dietary treatments. The treatments included a corn–soybean meal basal diet supplemented with 0, 1250 or 2500 mg/kg betaine. The feeding experiment lasted 42 d.Results: Betaine addition to the diet significantly increased the concentration of free fatty acids(FFA) in muscle(P 〈 0.05). Furthermore, the levels of serum cholesterol and high-density lipoprotein cholesterol were decreased(P 〈 0.05) and total cholesterol content was increased in muscle(P 〈 0.05) of betaine fed pigs. Experiments on genes involved in fatty acid transport showed that betaine increased expression of lipoprotein lipase(LPL), fatty acid translocase/cluster of differentiation(FAT/CD36), fatty acid binding protein(FABP3) and fatty acid transport protein(FATP1)(P 〈 0.05). The abundance of fatty acid transport protein and fatty acid binding protein were also increased by betaine(P 〈 0.05). As for the key factors involved in fatty acid oxidation, although betaine supplementation didn't affect the level of carnitine and malonyl-CoA, betaine increased mR NA and protein abundance of carnitine palmitransferase-1(CPT1)and phosphorylated-AMPK(P 〈 0.05).Conclusions: The results suggested that betaine may promoted muscle fatty acid uptake via up-regulating the genes related to fatty acid transporter including FAT/CD36, FATP1 and FABP3. On the other hand, betaine activated AMPK and up-regulated genes related to fatty acid oxidation including PPARα and CPT1. The underlying mechanism regulating fatty acid metabolism in pigs supplemented with betaine is associated with the up-regulation of genes involved in fatty acid transport and fatty acid oxidation.
基金grants from the National Natural Science Foundation of China(No.81370723)Beijing Municipal Natural Science Foundation(No.7132215).
文摘Background:Fatty acid oxidation(FAO)disorder is involved in the pathogenesis of some cases of preeclampsia(PE).Several show that mammalian target of rapamycin(mTOR)signaling pathway is related to FAO.Pravastatin(Pra)can promote FAO in Nio-nitro-L-arginine methyl ester(L-NAME)PE-like mouse model in our previous study.This study aimed to investigate the effect of mTOR signaling pathway in PE-like model treated with Pra.Methods:Pregnant mice were randomly injected with L-NAME as PE-like model group or saline as control group respectively,from gestational 7th to 18th day.Giving Pra(L-NAME+Pra,Control+Pra,n=8)or normal saline(NS;L-NAME+NS,Control+NS,n=8)from gestational 8th to 18th day,the mice were sacrificed on day 18 and their liver and placental tissues were collected.Then the activation of mTOR and its substrates in the liver and placenta were detected.And the association between mTOR activation and mice were randomly injected with L-NAME as PE-like model group or saline as control group respectively,from serum free fatty acid(FFA)levels and the expression of long-chain 3-hydroxyacyl-coenzyme A dehydrogenase(LCHAD)were evaluated using Pearson correlation test.Differences between groups were analyzed using independent t-test or one-way analysis of variance(ANOVA).Results:Both in the maternal liver and placenta,the activation of mTOR protein and its effect on substrates increased significantly in the L-NAME+NS group and decreased significantly in the L-NAME+Pra group.The p-mTOR/mTOR protein ratio decreased in the L-NAME+Pra group significantly than that in the L-NAME+NS group both in liver and placenta(liver:0.74±0.08 vs.0.85±0.06,t=2.95,P<0.05;placenta:0.63±0.06 vs.0.77±0.06,t=4.64,P<0.05).The activation of mTOR protein in the liver and placenta negatively correlated with the expression of LCHAD in the L-NAME+NS group(liver:r=—0.745,P<0.05;placenta:r=-0.833,P<0.05)and that in the maternal liver negatively correlated with the expression of LCHAD(r=—0.733,P<0.05)and serum FFA levels positively with the(r=0.841,P<0.05)in the L-NAME+Pra group.Conclusion:The inhibition of mTOR signaling pathway might be involved in the regulation of FAO in mouse model treated with Pra.
基金This work was supported by a grant from the National Natural Science Foundation of China (No. 30840088).
文摘Background Preeclampsia is one of hypertensive disorders in pregnancy. It is associated with abnormal lipid metabolism, including fatty acid oxidation metabolism. Long chain 3-hydroxyacyI-CoA dehydrogenase (LCHAD) plays an indispensable role in the oxidation of fatty acids. It has been reported that nitric oxide (NO) is one of the regulatory factors of the fatty acid oxidation pathway. The aim of this research was to investigate whether the nitric oxide synthase (NOS)inhibitor L-NAME may cause down-regulation of LCHAD in the pathogenesis of preeclampsia.Methods Pregnant wild-type (WT) mice were treated with L-NAME or normal saline (NS) during gestation days 7-18 (early group), days 11-18 (mid group) and days 16-18 (late group), and apoE-/- mice served as a control. Systolic blood pressure (SBP), urine protein, feto-placental outcome, plasma lipid levels and NO concentrations were measured, and the expression of mRNA and protein for LCHAD in placental tissue were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting, respectively.Results In WT and apoE-/- mice, SBP and urinary protein increased following L-NAME injection. Fetal and placental weights and NO concentrations were reduced and total cholesterol, triglycerides and free fatty acid levels were increased in early and mid L-NAME groups in WT and apoE-/- mice, compared with the NS group. There was no significant difference between the late L-NAME group and NS group. RT-PCR and Western blotting analysis showed that the mRNA and protein levels of LCHAD expression were significantly down-regulated in the early and mid L-NAME groups but not in the late L-NAME group in the WT and apoE-/- mice compared with the corresponding NS groups.Conclusions Inhibition of NO in early and mid gestation in mice may cause hyperlipidemia and suppression of fatty acid oxidation, whereas preeclampsia-like conditions in late gestation may be a maternal vascular response to inhibition of NO.
基金This work was supported in part by a grant from the National Cancer Institute(R01CA200232-05)a DoD breast cancer grant(11895064)to C.G.M.and by grants from National Heart,Lung,and Blood Institute(HL-057832,HL-132871,and HL-13A781)to LAB.
文摘Tamoxifen(TAM)is the first-line endocrine therapy for estrogen receptor-positive(ER+)breast cancer(BC).However,acquired resistance occurs in∼50%cases.Meanwhile,although the PI3K/AKT/mTOR pathway is a viable target for treatment of endocrine therapy-refractory patients,complex signaling feedback loops exist,which can counter the effectiveness of inhibitors of this pathway.Here,we analyzed signaling pathways and metabolism in ER+MCF7 BC cell line and their TAM-resistant derivatives that are co-resistant to endoxifen using immunoblotting,quantitative polymerase chain reaction,and the Agilent Seahorse XF Analyzer.We found that activation of AKT and the energy-sensing kinase AMPK was increased in TAM and endoxifen-resistant cells.Furthermore,ERRα/PGC-1βand their target genes MCAD and CPT-1 were increased and regulated by AMPK,which coincided with increased fatty acid oxidation(FAO)and autophagy in TAM-resistant cells.Inhibition of AKT feedback-activates AMPK and ERRα/PGC-1β-MCAD/CPT-1 with a consequent increase in FAO and autophagy that counters the therapeutic effect of endoxifen and AKT inhibitors.Therefore,our results indicate increased activation of AKT and AMPK with metabolic reprogramming and increased autophagy in TAM-resistant cells.Simultaneous inhibition of AKT and FAO/autophagy is necessary to fully sensitize resistant cells to endoxifen.
基金This work is supported by Animal Nutrition,Growth and Lactation(grant no.2015-67015-23245/project accession no.1005855)from the USDA National Institute of Food and Agriculturethe North Carolina Agricultural Research Hatch projects 1016618 and 02780。
文摘To investigate whether increasing tricarboxylic acid(TCA)cycle activity and ketogenic capacity would augment fatty acid(FA)oxidation induced by the peroxisome proliferator-activated receptor-alpha(PPARα)agonist clofibrate,suckling newborn piglets(n=54)were assigned to 8 groups following a 2(±clofibrate)×4(glycerol succinate[SUC],triglycerides of 2-methylpentanoic acid[T2M],valeric acid[TC5]and hexanoic acid[TC6])factorial design.Each group was fed an isocaloric milk formula containing either 0%or 0.35%clofibrate(wt/wt,dry matter basis)with 5%SUC,T2M,TC5 or TC6 for 5 d.Another 6 pigs served as newborn controls.Fatty acid oxidation was examined in fresh homogenates of liver collected on d 6 using[1-^(14)C]palmitic acid(1 mM)as a substrate(0.265μCi/μmol).Measurements were performed in the absence or presence of L-carnitine(1 mM)or inhibitors of 3-hydroxy-3-methylglutaryl-CoA synthase(L659699,1.6μM)or acetoacetate-CoA deacylase(iodoacetamide,50μM).Without clofibrate stimulation,^(14)C accumulation in CO_(2) was higher from piglets fed diets containing T2M and TC5 than SUC,but similar to those fed TC6.Under clofibrate stimulation,accumulation also was higher in homogenates from piglets fed TC5 than all other dietary treatments.Interactions between clofibrate and carnitine or the inhibitors were observed(P=0.0004)for acid soluble products(ASP).In vitro addition of carnitine increased^(14)C-ASP(P<0.0001)above all other treatments,regardless of clofibrate treatment.The percentage of^(14)C in CO_(2) was higher(P=0.0023)in TC5 than in the control group.From these results we suggest that dietary supplementation of anaplerotic and ketogenic FA could impact FA oxidation and modify the metabolism of acetyl-CoA(product ofβ-oxidation)via alteration of TCA cycle activity,but the modification has no significant impact on the hepatic FA oxidative capacity induced by PPARα.In addition,the availability of carnitine is a critical element to maintain FA oxidation during the neonatal period.
基金Supported by the National Natural Science Foundation of China (20401007).
文摘The oxidation of polyunsaturated fatty acids (PUFA) in emulsion with stirring and limited oxygen compensation was studied. A mathematical model of diffusion-oxidation was developed considering the mass transfer resistance of a gas-liquid boundary, the resistance of the boundary layer from the emulsifier membrane, and the autocatalytic-type autoxidation reaction of PUFA. The dynamic mass transfer coefficient of the emulsifier membrane, k0, was introduced. The model was verified by comparing the predictions of the model with the experi- mental data. The results indicated that the model was in good agreement with the oxygen diffusion and linoleic acid oxidation in the emulsion, and showed good applicability in the prediction of the effect of the emulsifier type on the oxidation of PUFA in the emulsion. It indicated that the oxidation of PUFA in emulsions, with stirring and limited oxygen compensation from the atmosphere, was controlled mostly by mass transfer resistance from the emulsifier membrane.
基金financed by the Innovation Team Program of Zhejiang province(2011R50025)
文摘Background: Fat is the primary source of the volatiles that determine the characteristic flavors of animal products.Because unsaturated fatty acids(UFAs) contribute to changes in flavor as a result of the oxidation process, a feeding trial was performed to investigate the effects of dietary soybean oil or antioxidants on the fatty acid and volatile profiles of the tail subcutaneous(SF) and perirenal fat tissues(PF) of fattening lambs. Thirty-six Huzhou lambs were assigned to four dietary treatments in a randomized block design. The lambs' diets were supplemented with soybean oil(0 or 3 % of DM) or antioxidants(0 or 0.025 % of DM).Results: Neither soybean oil nor antioxidant supplementation had an effect on lamb growth(P 〉 0.05). In regard to tail SF, soybean oil supplementation increased the 18:2n6t(P 〈 0.05) and the total amount of volatile acids,whereas antioxidant supplementation increased the content of C18:2n6c and C18:3n3(P 〈 0.05) but had no effect on the volatiles profile. In regard to PF, dietary soybean oil supplementation increased the C18:0 content(P 〈 0.01);decreased the C18:1(P = 0.01), C22:1 n9(P 〈 0.01) and total UFA(P = 0.03) contents; and tended to decrease the E-2-octenal(P = 0.08), E, E-2, 4-decadienal(P = 0.10), 2-undecenal(P = 0.14) and ethyl 9-decenoate(P = 0.10) contents.Antioxidant supplementation did not affect either the fatty acid content or the volatiles profile in the PF.Conclusions: Tail SF and PF responded to dietary soybean oil and antioxidant supplementation in different ways. For SF, both soybean oil and antioxidant supplementation increased the levels of unsaturated fatty acids but triggered only a slight change in volatiles. For PF, soybean oil supplementation decreased the levels of unsaturated fatty acids and oxidative volatiles, but supplementation with antioxidants had little effect on PF fatty acids and the volatiles profile.
基金This work was supported by the grants from National Natural Science Foundation of China(No.82174334)2022 Postgraduate Innovation Research Projects in Hainan Province(No.Qhys2022-273).
文摘Objective:To investigate the effects of Alpiniae oxyphyllae Fructus(AOF)on renal lipid deposition in diabetic kidney disease(DKD)and elucidate its molecular mechanisms.Methods:The mechanism of AOF in treating DKD was explored by network pharmacological enrichment analysis,molecular docking,and molecular dynamics simulation.The effects of AOF on renal function and lipid deposition were assessed in a mouse model of DKD and high glucose-stressed HK-2 cells.Cell viability and lipid accumulation were detected by CCK8 and oil red O staining.The expressions of PPARαand fatty acid oxidation-related genes(ACOX1 and CPT1A)were detected by quantitative RT-PCR,Western blot,and immunofluorescence.Furthermore,PPARαknockdown was performed to examine the molecular mechanism of AOF in treating DKD.Results:Network pharmacological enrichment analysis,molecular docking,and molecular dynamics simulation showed that the active compounds in AOF targeted PPARαand thus transcriptionally regulated ACOX1 and CPT1A.AOF lowered blood glucose,improved dyslipidemia,and attenuated renal injury in DKD mice.AOF-containing serum accentuated high glucose-induced decrease in cell viability and ameliorated lipid accumulation.Additionally,it significantly upregulated the expression of PPARα,ACOX1,and CPT1A in both in vivo and in vitro experiments,which was reversed by PPARαknockdown.Conclusions:AOF may promote fatty acid oxidation via PPARαto ameliorate renal lipid deposition in DKD.
文摘Nonalcoholic fatty liver disease (NAFLD) includes hepatic steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. NAFLD is the most common liver disorder in the United States and worldwide. Due to the rapid rise of the metabolic syndrome, the prevalence of NAFLD has recently dramatically increased and will continue to increase. NAFLD has also the potential to progress to hepatocellular carcinoma (HCC) or liver failure. NAFLD is strongly linked to caloric overconsumption, physical inactivity, insulin resistance and genetic factors. Although significant progress in understanding the pathogenesis of NAFLD has been achieved in years, the primary metabolic abnormalities leading to lipid accumulation within hepatocytes has remained poorly understood. Mitochondria are critical metabolic organelles serving as "cellular power plants". Accumulating evidence indicate that hepatic mitochondrial dysfunction is crucial to the pathogenesis of NAFLD. This review is focused on the significant role of mitochondria in the development of NAFLD.
基金Yunnan Province Innovation Team of Intestinal Microecology-Related Disease Research and Technological Transformation (202005AE160010)National Natural Science Foundation of China (81860437)+2 种基金Prominent Physician Project of Yunnan province (YNWR-MY-2019-072)Yunnan Major Science and Technology Project (2019ZF004)Digestive Endoscopy Medical Center (2019LCZXKF-XH05) for financial support.
文摘Alstonia scholaris(L.)R.Br(Apocynaceae)is a well-documented medicinal plant for treating respiratory diseases,liver diseases and diabetes traditionally.The current study aimed to investigate the effects of TA on non-alcoholic fatty liver disease(NAFLD).A NAFLD model was established using mice fed a high-fat diet(HFD)and administered with TA(7.5,15 and 30 mg/kg)orally for 6 weeks.The biochemical parameters,expressions of lipid metabolism-related genes or proteins were analyzed.Furthermore,histopathological examinations were evaluated with Hematoxylin-Eosin and MASSON staining.TA treatment significantly decreased the bodyweight of HFD mice.The concentrations of low-density lipoprotein(LDL),triglyceride(TG),aspartate aminotransferase(AST)and alanine aminotransferase(ALT)were also decreased significantly in TA-treated mice group,accompanied by an increase in high-density lipoprotein(HDL).Furthermore,TA alleviated hepatic steatosis injury and lipid droplet accumulation of liver tissues.The liver mRNA levels involved in hepatic lipid synthesis such as sterol regulatory element-binding protein 1C(SREBP-1C),regulators of liver X receptorα(LXRα),peroxisome proliferator activated receptor(PPAR)γ,acetyl-CoA carboxylase(ACC1)and stearyl coenzyme A dehydrogenase-1(SCD1),were markedly decreased,while the expressions involved in the regulation of fatty acid oxidation,PPARα,carnitine palmitoyl transterase 1(CPT1A),and acyl coenzyme A oxidase 1(ACOX1)were increased in TA-treated mice.TA might attenuate NAFLD by regulating hepatic lipogenesis and fatty acid oxidation.
基金supported by NIH Grant Al-15614 (to CAD)the Ministerio de Ciencia e Innovacion (PID2020-120267BRI00AEI/10.13039/501100011033)(to RLV)。
文摘Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.
基金supported by the National Natural Science Foundation of China(32372247)the National Key Research and Development Program of China(2023YFF1104501)to Huiyuan Guo.
文摘Intestinal stem cells(ISCs)initiate intestinal epithelial regeneration and tumorigenesis,and they experi-ence rapid refilling upon various injuries for epithelial repair as well as tumor reoccurrence.It is crucial to reveal the mechanism underlying such plasticity for intestinal health.Recent studies have found that metabolic pathways control stem cell fate in homeostasis,but the role of metabolism in the regeneration of ISCs after damage has not been clarified.Here,we find that in a human colorectal cancer dataset,miR-29a and b(miR-29a/b)are metabolic regulators highly associated with intestinal tumorigenesis and worse prognostic value of radiotherapy.We also show that these two microRNAs are required for intesti-nal stemness maintenance in mice,and their expression is induced in regenerated ISCs after irradiation injury,resulting in skewed ISC fate from differentiation towards self-renewal.This upregulation of miR-29a/b expression in ISCs leads to suppression of fatty acid oxidation(FAO)and depression of oxidative phosphorylation,which in turn controls the balance between self-renewal and differentiation of ISCs.Deletion of miR-29a/b prevents these effects and thus impairs ISC-mediated epithelial recovery.Finally,we filter the potential targets of miR-29a/b and identify Hnf4g,a transcription factor,that drives this metabolic reprogramming through regulating FAO-related enzymes.Our work discovers an impor-tant metabolic mechanism of ISC-mediated regeneration and potentially pave the way for more targeted and effective therapeutic strategies for intestinal repair as well as tumor treatment.
文摘Background and objective Metabolic associated fatty liver disease(MAFLD)is associated with abnormal lipid metabolism.Mitochondrial dysfunction is considered an important factor in the onset of MAFLD,whereas altered fatty acid composition has been linked to the severity of the disease.Tetradecylthioacetic acid(TTA),shown to induce mitochondrial proliferation and alter the fatty acid composition,was used to delay the accumulation of hepatic triacylglycerol.This study aimed to evaluate how impaired mitochondrial fatty acid beta-oxidation affects fatty acid composition by incorporating meldonium into a high-carbohydrate diet.Methods C57BL/6 mice(n=40)were fed high-carbohydrate diets supplemented with meldonium,TTA,or a combination of meldonium and TTA for 21 days.Lipid levels were determined in liver samples,and fatty acid composition was measured in both liver and plasma samples.Additionally,desaturase and elongase activities were estimated.The hepatic activities and gene expression levels of enzymes involved in fatty acid metabolism were measured in liver samples,whereas carnitines,their precursors,and acylcarnitines were measured in plasma samples.Results The meldonium-induced depletion of L-carnitine and mitochondrial fatty acid oxidation was confirmed by reduced plasma levels of L-carnitine and acylcarnitines.Principal component analyses of the hepatic fatty acid composition revealed clustering dependent on meldonium and TTA.The meldonium-induced increase in hepatic triacylglycerol levels correlated negatively with estimated activities of elongases and was associated with higher estimated activities of delta-6 desaturase(D6D;C18:4n-3/C18:3n-3 and C18:3n-6/C18:2n-6),and increased circulating levels of C18:4n-3 and C18:3n-6(gamma-linolenic acid).TTA mitigated meldonium-induced triacylglycerol levels by 80%and attenuated the estimated D6D activities,and elongation of n-6 polyunsaturated fatty acids(PUFAs).TTA also attenuated the meldonium-mediated reduction of C24:1n-9(nervonic acid),possibly by stimulating Elovl5 and increased elongation of erucic acid(C22:1n-9)to nervonic acid.The hepatic levels of nervonic acid and the estimated activity of n-6 PUFA elongation correlated negatively with the hepatic triacylglycerol levels,while the estimated activities of D6D correlated positively.Conclusion Circulating levels of gamma-linolenic acid,along with reduced estimated elongation of n-6 PUFAs and D6D desaturation activities,were associated with hepatic triacylglycerol levels.