条锈病和黄矮病是严重威胁小麦生产的重大病害,病害的早期识别对病害防控具有重要意义。现有病害识别模型对相似表型症状识别困难,对早期病害的识别准确度低。为此,该研究构建了一种改进的快速区域卷积神经网络(Faster Regions with CNN...条锈病和黄矮病是严重威胁小麦生产的重大病害,病害的早期识别对病害防控具有重要意义。现有病害识别模型对相似表型症状识别困难,对早期病害的识别准确度低。为此,该研究构建了一种改进的快速区域卷积神经网络(Faster Regions with CNN Features,Faster-RCNN)的病害识别方法。该方法采用卷积核拆解和下采样延迟策略优化了深度残差网络(Deep Residual Neural Network,ResNet-50),用优化后的ResNet-50作为主干特征提取网络以增强所提取特征的表达力,同时简化模型的参数;并采用ROI(Region of Interest)Align改进ROI迟化层以降低特征量化误差,提升识别的精度。在自建的涵盖200余种不同发病时期、不同抗感性的小麦叶部图像数据集上进行试验,结果表明:改进的Faster-RCNN识别方法比其他SSD(Single Shot Multi-Box Detector)、YOLO(You Only Look Once)和Faster-RCNN网络模型的平均精度均值(mean Average Precision,m AP)分别提升了9.26个百分点、7.64个百分点和14.97个百分点。对小麦条锈病、黄矮病、健康小麦和其他黄化症状小麦识别的平均精度均值可达98.74%;对小麦条锈病和黄矮病轻、重症识别的平均精度均值可达91.06%。同时,模型损失函数值降低更快,整体性能表现更优。进一步开发小麦病害智能识别系统部署研究模型,使用微信小程序进行田间小麦病害的识别。在最大并发100的条件下,小程序平均返回时延为5.02 s,识别返回成功率为97.85%,对两种小麦病害及其细分轻重症识别的平均准确率为93.56%,能够有效满足实际应用需求,可用于指导病害的科学防控。展开更多
目的通过构建轮毂在线生产视觉检测系统,预测轮毂生产过程中轮毂表面的缺陷。方法根据轮毂表面缺陷的定义和评价标准,给出了轮毂表面缺陷的计算模型,采用了改进型的Faster-RCNN目标检测算法,引入了深度生成式对抗网络,消除图像的模糊性...目的通过构建轮毂在线生产视觉检测系统,预测轮毂生产过程中轮毂表面的缺陷。方法根据轮毂表面缺陷的定义和评价标准,给出了轮毂表面缺陷的计算模型,采用了改进型的Faster-RCNN目标检测算法,引入了深度生成式对抗网络,消除图像的模糊性,再利用清晰的轮毂表面图像进行模型训练,结合领域专家的判别标准,优化网络参数,构建轮毂表面缺陷检测模型。利用深度学习Pytorch框架,在NVIDIA Tesla P100图像加速卡上进行模型训练,并对模型结果进行对比性实验分析,找出最优的预测模型。结果在基础网络部分,采用残差模型ResNet101网络比采用VGG16模型的准确率提高了24%。在目标检测网络模型中引入了多通道特征融合模块,准确率提升了2%。再引入FPN金字塔模型,融入低级和高级语义信息,使得输出的多尺度的预测特征图谱效果更好。最后把残差网络的ROI-Pooling算法改为ROI-Align算法,准确率提高了5%。通过对网络模型的不断改进和优化,轮毂表面缺陷的识别率不断提高。结论利用改进型的Faster-RCNN网络能够识别出轮毂表面缺陷的种类和位置,满足生产环境的要求,具有一定的工程应用价值。展开更多
针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature an...针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature and Polarized self-attention)。首先,建立黄河兰州段小目标水漂垃圾数据集,将空洞卷积结合ResNet-50代替原来的VGG-16(Visual Geometry Group 16)作为主干特征提取网络,扩大感受野以提取更多小目标特征;其次,在区域生成网络(RPN)利用多尺度特征,设置3×3和1×1的两层卷积,补偿单一滑动窗口造成的特征丢失;最后,在RPN前加入极化自注意力,进一步利用多尺度和通道特征提取更细粒度的多尺度空间信息和通道间依赖关系,生成具有全局特征的特征图,实现更精确的目标框定位。实验结果表明,MP-Faster-RCNN能有效提高水漂垃圾检测精度,与原始Faster-RCNN相比,平均精度均值(mAP)提高了6.37个百分点,模型大小从521 MB降到了108 MB,且在同一训练批次下收敛更快。展开更多
文摘条锈病和黄矮病是严重威胁小麦生产的重大病害,病害的早期识别对病害防控具有重要意义。现有病害识别模型对相似表型症状识别困难,对早期病害的识别准确度低。为此,该研究构建了一种改进的快速区域卷积神经网络(Faster Regions with CNN Features,Faster-RCNN)的病害识别方法。该方法采用卷积核拆解和下采样延迟策略优化了深度残差网络(Deep Residual Neural Network,ResNet-50),用优化后的ResNet-50作为主干特征提取网络以增强所提取特征的表达力,同时简化模型的参数;并采用ROI(Region of Interest)Align改进ROI迟化层以降低特征量化误差,提升识别的精度。在自建的涵盖200余种不同发病时期、不同抗感性的小麦叶部图像数据集上进行试验,结果表明:改进的Faster-RCNN识别方法比其他SSD(Single Shot Multi-Box Detector)、YOLO(You Only Look Once)和Faster-RCNN网络模型的平均精度均值(mean Average Precision,m AP)分别提升了9.26个百分点、7.64个百分点和14.97个百分点。对小麦条锈病、黄矮病、健康小麦和其他黄化症状小麦识别的平均精度均值可达98.74%;对小麦条锈病和黄矮病轻、重症识别的平均精度均值可达91.06%。同时,模型损失函数值降低更快,整体性能表现更优。进一步开发小麦病害智能识别系统部署研究模型,使用微信小程序进行田间小麦病害的识别。在最大并发100的条件下,小程序平均返回时延为5.02 s,识别返回成功率为97.85%,对两种小麦病害及其细分轻重症识别的平均准确率为93.56%,能够有效满足实际应用需求,可用于指导病害的科学防控。
文摘目的通过构建轮毂在线生产视觉检测系统,预测轮毂生产过程中轮毂表面的缺陷。方法根据轮毂表面缺陷的定义和评价标准,给出了轮毂表面缺陷的计算模型,采用了改进型的Faster-RCNN目标检测算法,引入了深度生成式对抗网络,消除图像的模糊性,再利用清晰的轮毂表面图像进行模型训练,结合领域专家的判别标准,优化网络参数,构建轮毂表面缺陷检测模型。利用深度学习Pytorch框架,在NVIDIA Tesla P100图像加速卡上进行模型训练,并对模型结果进行对比性实验分析,找出最优的预测模型。结果在基础网络部分,采用残差模型ResNet101网络比采用VGG16模型的准确率提高了24%。在目标检测网络模型中引入了多通道特征融合模块,准确率提升了2%。再引入FPN金字塔模型,融入低级和高级语义信息,使得输出的多尺度的预测特征图谱效果更好。最后把残差网络的ROI-Pooling算法改为ROI-Align算法,准确率提高了5%。通过对网络模型的不断改进和优化,轮毂表面缺陷的识别率不断提高。结论利用改进型的Faster-RCNN网络能够识别出轮毂表面缺陷的种类和位置,满足生产环境的要求,具有一定的工程应用价值。
文摘针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature and Polarized self-attention)。首先,建立黄河兰州段小目标水漂垃圾数据集,将空洞卷积结合ResNet-50代替原来的VGG-16(Visual Geometry Group 16)作为主干特征提取网络,扩大感受野以提取更多小目标特征;其次,在区域生成网络(RPN)利用多尺度特征,设置3×3和1×1的两层卷积,补偿单一滑动窗口造成的特征丢失;最后,在RPN前加入极化自注意力,进一步利用多尺度和通道特征提取更细粒度的多尺度空间信息和通道间依赖关系,生成具有全局特征的特征图,实现更精确的目标框定位。实验结果表明,MP-Faster-RCNN能有效提高水漂垃圾检测精度,与原始Faster-RCNN相比,平均精度均值(mAP)提高了6.37个百分点,模型大小从521 MB降到了108 MB,且在同一训练批次下收敛更快。