期刊文献+
共找到669篇文章
< 1 2 34 >
每页显示 20 50 100
改进Faster-R-CNN的输送带表面损伤检测 被引量:2
1
作者 袁媛 赵鹏举 +1 位作者 孟文俊 王航 《机械设计与制造》 北大核心 2025年第3期199-203,共5页
针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入ancho... 针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入anchor原始特征与卷积相融合的背景分类,以加强输送带的损伤特征信息;最后构建输送带表面损伤的数据集进行数据试验,并分别采用VGG-19,ResNet-18骨干网络进行试验对比,结果表明改进的Faster-R-CNN的算法,针对输送带划伤、撕裂和破损的损伤状态均能够有效识别。 展开更多
关键词 输送带 损伤检测 faster-r-cnn MobileNet
在线阅读 下载PDF
基于改进Faster-R-CNN塔式起重机驾驶人员行为监测研究 被引量:1
2
作者 李亚伟 陈文铿 +4 位作者 林鸿强 张旭生 陈子健 林进浔 陈国栋 《智能计算机与应用》 2023年第9期153-157,共5页
考虑到塔吊驾驶环境的特殊性,为减少塔吊驾驶人员不规范的驾驶行为,降低塔吊事故的发生率,本文结合手部检测的塔吊驾驶人员行为规范监测方法,改进Faster R-CNN算法模型,融合了剪枝、通道注意力机制等算法,提出了CF-R-CNN模型。根据手部... 考虑到塔吊驾驶环境的特殊性,为减少塔吊驾驶人员不规范的驾驶行为,降低塔吊事故的发生率,本文结合手部检测的塔吊驾驶人员行为规范监测方法,改进Faster R-CNN算法模型,融合了剪枝、通道注意力机制等算法,提出了CF-R-CNN模型。根据手部和被检测物体的预测框交并比阈值,判断驾驶人员是否存在违规行为。改进后,网络的F1值相比原网络只降低了2.1%,但FPS提高了23.0%,并与FRC-Tiny和Cut-YOLOv3算法进行了对比。实验结果证明,该网络在性能上有一定的提升,达到了实时性检测的要求,可在移动端进行部署。 展开更多
关键词 驾驶人员检测 深度学习 通道注意力 Faster R-CNN 目标检测
在线阅读 下载PDF
一种抗遮挡重叠与尺度变化的行人检测算法
3
作者 马晞茗 李宁 吴迪 《现代电子技术》 北大核心 2026年第1期41-48,共8页
针对复杂人群密集场景中因行人目标受遮挡和行人目标尺度不一等因素导致行人检测器检测精度下降、漏检率变高的问题,基于Faster R-CNN算法进行改进,提出一种抗遮挡重叠与尺度变化的行人检测算法。在特征提取环节,设计一种融合注意力机... 针对复杂人群密集场景中因行人目标受遮挡和行人目标尺度不一等因素导致行人检测器检测精度下降、漏检率变高的问题,基于Faster R-CNN算法进行改进,提出一种抗遮挡重叠与尺度变化的行人检测算法。在特征提取环节,设计一种融合注意力机制的循环多尺度特征提取网络,用于学习更为丰富细致的多尺度特征信息,并重点聚焦于关键特征信息,提升网络对不同尺度行人目标的灵敏度;对于损失函数模块,引入斥力损失以降低目标相互遮挡对检测造成的干扰;在后处理环节,设计一种基于遮挡重叠率补偿的非极大值抑制算法,使得实际的抑制阈值能够随着遮挡程度的变化而自适应调整,从而进一步降低密集处行人目标的漏检率。实验结果表明:改进后算法的检测性能更为出色,在CrowdHuman和CityPersons数据集上的检测平均精度相比基准算法分别提升了2.5%和1.9%,对数平均漏检率分别降低了3.5%和3.2%,在TJU-DHD-pedestrian数据集上不同尺度行人目标的对数平均漏检率也得到较为明显的降低,所提算法可以适用于复杂场景中的行人检测。 展开更多
关键词 行人检测 人群密集场景 Faster R-CNN 多尺度特征融合 损失函数 非极大值抑制
在线阅读 下载PDF
一种改进的Faster R-CNN遥感图像多目标检测模型研究 被引量:1
4
作者 苗茹 李祎 +3 位作者 周珂 张俨娜 常然然 孟更 《计算机工程》 北大核心 2025年第8期292-304,共13页
针对遥感图像背景复杂、目标种类多和尺度差异大所造成的目标漏检和误检问题,提出一种改进Faster R-CNN多目标检测模型。首先,采用Swin Transformer来替代ResNet 50骨干网络,增强模型特征提取能力;其次,添加平衡特征金字塔(BFP)模块融... 针对遥感图像背景复杂、目标种类多和尺度差异大所造成的目标漏检和误检问题,提出一种改进Faster R-CNN多目标检测模型。首先,采用Swin Transformer来替代ResNet 50骨干网络,增强模型特征提取能力;其次,添加平衡特征金字塔(BFP)模块融合浅层和高层语义信息,进一步加强特征融合效果;最后,在分类和回归分支中,添加动态权重机制,促进网络在训练过程中更关注高质量候选框,提高目标定位和分类的精确度。在RSOD数据集上的实验结果表明,所提模型相较于Faster R-CNN模型每秒浮点运算次数(FLOPs)大幅度减少,并且模型的mAP@0.5∶0.95提高了10.7百分点,平均召回率提高10.6百分点。相较于其他主流检测模型,所提模型在降低漏检率的同时,取得了更高的精度,能显著提高复杂背景下遥感图像的检测精度。 展开更多
关键词 遥感图像 多目标检测 Faster R-CNN Swin Transformer模块 平衡特征金字塔 动态权重机制
在线阅读 下载PDF
基于Faster R-CNN的作物生物密度智能识别方法 被引量:1
5
作者 李修华 李倩 +2 位作者 张瀚文 丁璐 王泽平 《生物工程学报》 北大核心 2025年第10期3828-3839,共12页
准确获取大田作物数量和密度不仅是水肥管理按需投入的关键,也是保障作物产量和品质的关键。无人机(unmanned aerial vehicle,UAV)航拍可以快速且大面积地获取大田作物的分布图像信息,但是单一类型密集目标的准确识别对于大多数识别算... 准确获取大田作物数量和密度不仅是水肥管理按需投入的关键,也是保障作物产量和品质的关键。无人机(unmanned aerial vehicle,UAV)航拍可以快速且大面积地获取大田作物的分布图像信息,但是单一类型密集目标的准确识别对于大多数识别算法来说都是一个巨大的挑战。本研究以香蕉苗为例,通过无人机高空航拍香蕉园的图像,研究密集目标高效识别方法。本研究提出了一种“裁-识-拼”的策略,构建了一个基于改进的Faster R-CNN算法的计数方法。该方法先将包含高密集目标的图像按不同尺寸(模拟不同飞行高度)裁剪成大量图像瓦片,并采用对比度限制自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法提高图像质量,构建了包含36000张图像瓦片的香蕉苗数据集;然后采用经过参数优化的Faster R-CNN网络训练香蕉苗识别模型;最后将识别结果进行反拼接,并设计了一种边界去重算法,对最终的计数结果进行校正,以减少图像裁剪引起的香蕉苗重复识别。结果表明,经过参数优化的Faster R-CNN对不同尺寸的香蕉图像数据集的识别精度最高达到了0.99;去重算法可以将针对航拍原始图像的平均计数误差从1.60%降低到0.60%,香蕉苗的平均计数准确率达到99.4%。本研究提出的方法有效解决了高分辨率航拍图像中密集小目标识别难题,为精准农业中的作物密度智能监测提供了高效可靠的技术支撑。 展开更多
关键词 果园计数 香蕉 Faster R-CNN 深度学习 去重
原文传递
基于改进Faster R-CNN的焊缝缺陷检测方法 被引量:3
6
作者 陈利琼 梅后金 +1 位作者 胡洪宣 赵奎 《科学技术与工程》 北大核心 2025年第5期2027-2033,共7页
管道内部的焊缝缺陷是导致管道发生泄漏和破裂事故的主要原因,而X射线能够有效地检测到这些缺陷。然而,焊缝缺陷存在种类多、尺寸小和背景复杂等问题,影响检测精度。针对目前基于深度学习的焊缝缺陷检测模型对图像复杂背景和光照变化的... 管道内部的焊缝缺陷是导致管道发生泄漏和破裂事故的主要原因,而X射线能够有效地检测到这些缺陷。然而,焊缝缺陷存在种类多、尺寸小和背景复杂等问题,影响检测精度。针对目前基于深度学习的焊缝缺陷检测模型对图像复杂背景和光照变化的适应性不足、小目标检测效果不佳的问题。在快速区域卷积神经网络(faster region convolutional neural networks,Faster R-CNN)网络的主干网络上添加通道注意力机制和对残差块结构进行修改,并采用ROI Align替换传统Faster R-CNN网络的ROI Pooling的改进模型。实验结果表明:改进后的Faster R-CNN网络模型与原算法相比,平均精度值(mean average precision,mAP)和F_(1)分别比原算法提升了15.82%和16.44%,能够满足焊缝缺陷检测的高精度要求,具有重要的理论意义与良好的工程应用前景。 展开更多
关键词 深度学习 缺陷检测 X射线图像 Faster R-CNN
在线阅读 下载PDF
改进Faster R-CNN的钢材表面缺陷检测 被引量:3
7
作者 冷岳峰 刘正 +1 位作者 徐宝祎 李志轩 《机械科学与技术》 北大核心 2025年第1期75-83,共9页
钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特... 钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特征融合模块与轻量化通道注意力模块,增加模型对精细特征的捕捉能力。改进模型在NEU-DET数据集上的实验结果显示,最终mAP(Mean average precision,记为m_(AP))值为80.2%,比原始模型提高了12.6%,FPS提高了40.9%。该算法能够有效提升钢材表面缺陷的检测精度,为钢材表面缺陷自动检测提供参考。 展开更多
关键词 缺陷检测 特征融合 通道注意力机制 改进Faster R-CNN算法
在线阅读 下载PDF
基于改进Faster R-CNN的机场跑道道面裂缝检测方法 被引量:2
8
作者 张璐 高培伟 +1 位作者 张芊伊 李国庆 《粘接》 2025年第5期159-162,共4页
民航运输在中国交通体系中占据着至关重要的地位。随着机场使用年限的延长,道面损伤问题日益严重,这对飞机滑行与起降的安全构成了重大威胁。为了降低飞机在起降过程的风险性,提出了一种基于Faster R-CNN的改进检测方法。该检测方法综... 民航运输在中国交通体系中占据着至关重要的地位。随着机场使用年限的延长,道面损伤问题日益严重,这对飞机滑行与起降的安全构成了重大威胁。为了降低飞机在起降过程的风险性,提出了一种基于Faster R-CNN的改进检测方法。该检测方法综合利用了GC-ASFF模块、CIoU指标、改进损失函数和迁移学习等深度学习和目标检测技术,实现了对道面裂缝的准确检测,以便利用识别到的道面裂缝特征参数来对当前道面安全状况进行评估。试验结果表明,改进后的模型识别精度较高,综合性能较优,对于飞机跑道道面损伤能够进行精准识别和检测,具有较高的可靠性。 展开更多
关键词 裂缝检测 Faster R-CNN ASFF 交并比 损失函数
在线阅读 下载PDF
电离层行进式扰动的自动识别与参数提取
9
作者 赖昌 刘胜雨 《数据与计算发展前沿(中英文)》 2025年第4期33-41,共9页
【目的】为解决中尺度行进式电离层扰动(MSTID)人工检测中存在的效率低、主观性强等问题,本研究提出了一种基于深度学习的三级处理架构,利用子午工程兴隆站点的氧原子气辉数据,实现MSTID的自动检测与参数提取。【方法】首先构建10层卷... 【目的】为解决中尺度行进式电离层扰动(MSTID)人工检测中存在的效率低、主观性强等问题,本研究提出了一种基于深度学习的三级处理架构,利用子午工程兴隆站点的氧原子气辉数据,实现MSTID的自动检测与参数提取。【方法】首先构建10层卷积神经网络模型对原始气辉图像进行环境分类,筛选出有效观测图像;其次,基于迁移学习策略和虚拟数据增强技术,训练快速区域卷积神经网络模型实现MSTID波面精准定位;最后通过边缘检测与线性拟合算法提取波动参数。创新性提出波面模拟函数与泊松-高斯混合噪声模型,生成虚拟训练数据以增强模型鲁棒性。【结果】分类模型在测试集上的准确率达到96.9%,检测模型的交并比普遍高于75%。本文开发的自动识别和参数提取系统显著提升了气辉数据处理自动化水平,为大规模电离层扰动统计研究提供了可靠的技术方案。 展开更多
关键词 中尺度行进式电离层扰动 卷积神经网络 快速区域卷积神经网络 全天空气辉成像仪 虚拟图像
在线阅读 下载PDF
基于注意力机制和空洞卷积的无人机图像目标检测 被引量:1
10
作者 赖勤波 马正华 朱蓉 《计算机应用与软件》 北大核心 2025年第2期227-235,共9页
针对现有无人机图像目标检测算法存在小目标检测精度低、多尺度目标漏检等问题,提出一种基于通道注意力机制和并行结构空洞卷积特征融合的无人机图像目标检测算法。该算法在ResNet50特征提取网络中引入SENet和PSDCFFN,从通道和感受野两... 针对现有无人机图像目标检测算法存在小目标检测精度低、多尺度目标漏检等问题,提出一种基于通道注意力机制和并行结构空洞卷积特征融合的无人机图像目标检测算法。该算法在ResNet50特征提取网络中引入SENet和PSDCFFN,从通道和感受野两个层面提高算法的特征表达能力,并使用ROI Align代替ROI Pooling,基于K-Means重新设计RPN(Region Proposal Networks)锚框尺寸,减小目标回归过程的坐标偏差。实验表明,该算法能够提升无人机图像目标检测精度,在RSOD-Dataset和无人机图像数据集上,mAP分别达到92.52%和98.07%。 展开更多
关键词 无人机图像 FASTER R-CNN 注意力机制 空洞卷积 特征融合 目标检测
在线阅读 下载PDF
改进Faster R-CNN的变电站电气主接线图图元检测 被引量:1
11
作者 冯冰 杜岳凡 +4 位作者 金尧 宗祥瑞 金花 刘潭晶 王璁 《哈尔滨理工大学学报》 北大核心 2025年第4期39-47,共9页
针对变电站电气主接线图中图元检测精度低以及小目标图元误检率漏检率高的问题,提出一种基于改进Faster R-CNN算法的变电站电气主接线图图元检测方法。首先,引入深度残差网络结构,替换Faster R-CNN原始特征提取网络,增强多尺度图元目标... 针对变电站电气主接线图中图元检测精度低以及小目标图元误检率漏检率高的问题,提出一种基于改进Faster R-CNN算法的变电站电气主接线图图元检测方法。首先,引入深度残差网络结构,替换Faster R-CNN原始特征提取网络,增强多尺度图元目标特征提取能力;然后,引入特征金字塔网络,将浅层特征信息和深层特征信息融合,提升深层网络对小目标的检测性能;最后,依据小目标尺度分布特征,在区域建议网络中重新设定Anchor的参数值,进一步提高小目标检测性能。实验结果表明,改进算法的平均检测精度达88.9%,相比原算法提高了4.2%,具有更高的检测精度和更低的误检率与漏检率。 展开更多
关键词 变电站 接线图 图元检测 Faster R-CNN优化算法 深度学习
在线阅读 下载PDF
基于EfficientNetV2的PCB缺陷检测算法 被引量:1
12
作者 尹嘉超 吕耀文 +1 位作者 索科 黄玺 《计算机辅助设计与图形学学报》 北大核心 2025年第7期1260-1269,共10页
印刷电路板(PCB)是一种高精密的电子元器件,其优良与否对电子产品的质量有着重要影响.但现有的PCB缺陷检测算法存在着检测精度不高,特别是缺陷定位不够精确等问题.针对以上问题,提出一种基于EfficientNetV2的PCB缺陷检测算法.在Faster R... 印刷电路板(PCB)是一种高精密的电子元器件,其优良与否对电子产品的质量有着重要影响.但现有的PCB缺陷检测算法存在着检测精度不高,特别是缺陷定位不够精确等问题.针对以上问题,提出一种基于EfficientNetV2的PCB缺陷检测算法.在Faster R-CNN的基础上,通过选用特征提取能力更强的EfficientNetV2_M作为特征提取网络,同时使用通道注意力机制(ECA)对特征融合网络FPN进行优化,提高了细节信息提取能力.在北京大学智能机器人开放实验室发布的PCB瑕疵数据集上的实验结果表明,相较于目前检测效果最好的PCB缺陷检测算法LWN-Net,改进后的缺陷检测算法在IoU=0.50时mAP由99.58%提升到99.66%;在IoU=[0.50:0.95]时mAP由52.6%提升到79.4%.该网络在提升了PCB的检测精度的同时,解决了缺陷定位不够精确的问题,实现了高精度的PCB缺陷检测,具有一定的实际意义.代码已经开源在https://github.com/ChaO989/Defect_detection. 展开更多
关键词 印刷电路板 EfficientNetV2 缺陷检测 Faster R-CNN 高效通道注意力
在线阅读 下载PDF
基于Faster R-CNN的气象设备观测环境影响图像研究 被引量:1
13
作者 王超然 周若 +2 位作者 李中华 邬昀 白子诚 《电子设计工程》 2025年第4期128-132,共5页
为确保气象站点实况观测数据的准确性,观测场地需要有良好的环境。该研究利用深度学习技术中的Faster R-CNN模型,自动检测气象观测站场景中可能干扰仪器读数的视觉障碍物。通过收集并详细标注实际观测场景的图像数据,建立一个包含环境... 为确保气象站点实况观测数据的准确性,观测场地需要有良好的环境。该研究利用深度学习技术中的Faster R-CNN模型,自动检测气象观测站场景中可能干扰仪器读数的视觉障碍物。通过收集并详细标注实际观测场景的图像数据,建立一个包含环境对观测设备产生影响情况的数据集,涵盖正常与异常环境情况的百叶箱和雨量筒图像及其标注信息。对Faster R-CNN模型进行微调和超参数优化,以适应该特定识别任务。实验结果验证了模型在识别和定位障碍物方面的高效性,准确率为97.1%,展现出了较好的鲁棒性。该项研究将图像识别处理用于自动站探测环境,不仅证明了深度学习在改善气象观测条件中的有效性,也为相似领域的应用提供了方法论上的指导。 展开更多
关键词 深度学习 Faster R-CNN 气象观测场 图像处理
在线阅读 下载PDF
优化Faster R-CNN用于输电线路金具缺陷识别 被引量:2
14
作者 向哲宏 张捷 +3 位作者 宋卫平 李欢欢 徐小云 黄飞虎 《信息技术》 2025年第6期81-88,共8页
Faster R-CNN网络模型本身网络结构和参数存在检测准确度不够、检测的漏检率较高,以及不能完整标记检测目标的问题。因此通过对模拟退火算法进行优化,再将优化后的模拟退火算法对Faster R-CNN模型网络结构和参数进行寻优调试,将卷积神... Faster R-CNN网络模型本身网络结构和参数存在检测准确度不够、检测的漏检率较高,以及不能完整标记检测目标的问题。因此通过对模拟退火算法进行优化,再将优化后的模拟退火算法对Faster R-CNN模型网络结构和参数进行寻优调试,将卷积神经网络模型全连接层中神经元之间的权重和偏置看作参数,得到的最优参数再构建成新的Faster R-CNN模型网络,使得Faster R-CNN在目标检测和识别领域具有更好的效果。训练结果也证明,优化后的网络模型在目标检测识别的准确度上有极大的提高,并且对目标物体的定位错误率更低、定位位置更加准确,模型整体鲁棒性增加。 展开更多
关键词 优化模拟退火算法 Faster R-CNN 网络结构 输电线路金具 缺陷识别
在线阅读 下载PDF
基于Faster R-CNN和Mask R-CNN的滑坡自动识别研究 被引量:3
15
作者 于宪煜 杨森 《大地测量与地球动力学》 北大核心 2025年第1期1-4,12,共5页
基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2... 基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2、7∶3、6∶4的样本比例进行计算。研究结果表明,Mask R-CNN模型识别结果准确率、召回率和F 1分数等3项指标均优于Faster R-CNN;且经过交叉验证,证明Mask R-CNN模型的性能更为稳定。 展开更多
关键词 深度学习 滑坡识别 Mask R-CNN Faster R-CNN 交叉验证
在线阅读 下载PDF
基于FPN和Faster R-CNN的生命体征参数智能识别
16
作者 刘佳颖 刘金城 +4 位作者 綦雅婷 吴思圻 黄标晟 胡志雄 王建林 《计量学报》 北大核心 2025年第7期1075-1082,共8页
传统的多参数监护仪检定方法依赖人工读数和测量,效率低下。亟待研究一种基于人工智能的目标检测算法,实现多参数监护仪中生命体征参数的智能化识别,推动多参数监护仪自动化检定技术的发展。针对上述问题,提出一种基于FPN和Faster R-CN... 传统的多参数监护仪检定方法依赖人工读数和测量,效率低下。亟待研究一种基于人工智能的目标检测算法,实现多参数监护仪中生命体征参数的智能化识别,推动多参数监护仪自动化检定技术的发展。针对上述问题,提出一种基于FPN和Faster R-CNN的神经网络模型自动识别和分类生命体征参数,为后续实现多参数监护仪自动检定提供支持。为克服传统Faster R-CNN在中小目标识别任务上的不足,结合了ResNet50和FPN提取网络,以提升中小目标识别率。在实际临床采集的图像数据集上验证ResNet50+FPN的有效性,并与VGG16、MobileNetV2、EfficientNetB0、ResNet50等网络进行对比。结果表明,ResNet50+FPN识别的均值平均精度达到了83.32%,比VGG16提升了3.88%,在中小目标识别均值平均精度上分别提升了4.05%和9.60%。 展开更多
关键词 医学计量 生命体征参数 多参数监护仪 FPN Faster R-CNN 自动化检定 目标检测
在线阅读 下载PDF
基于改进Faster R-CNN的荔枝病虫害检测 被引量:4
17
作者 谢家兴 廖飞 +5 位作者 王卫星 高鹏 胡凯 吴佩文 邓钲奇 刘洪山 《华中农业大学学报》 北大核心 2025年第1期62-73,共12页
针对荔枝园复杂背景下荔枝小目标病虫害检测困难的问题,提出一种基于改进Faster R-CNN的荔枝病虫害检测方法。以Faster R-CNN为基础,使用特征提取能力更优秀的Swin Transformer代替原有主干网络VGG16;通过特征金字塔网络(feature pyrami... 针对荔枝园复杂背景下荔枝小目标病虫害检测困难的问题,提出一种基于改进Faster R-CNN的荔枝病虫害检测方法。以Faster R-CNN为基础,使用特征提取能力更优秀的Swin Transformer代替原有主干网络VGG16;通过特征金字塔网络(feature pyramid network, FPN)提升Faster R-CNN模型的多尺度特征融合能力,均衡提高每一类荔枝病虫害的识别精确率;引入感兴趣区域对齐(region of interest align, ROI Align)策略提升模型的候选框定位精度,进一步提升模型的整体检测效果。结果显示,改进后的模型平均精度均值达到92.76%,相较原始Faster R-CNN检测器提升了30.08百分点,在5类荔枝病虫害图像(藻斑病、炭疽病、煤烟病、毛毡病、叶瘿蚊)中的检测精度分别为93.05%、94.81%、96.57%、87.03%和92.34%,平均精度均值比SSD512、RetinaNet、EfficientDet-d0和YOLOv5s模型分别提高了20.50、5.70、13.08和3.26百分点。结果表明,改进后的Faster R-CNN模型能准确检测复杂背景下的荔枝病虫害目标,具有较高的应用价值,能为农作物病虫害快速、准确识别研究提供参考。 展开更多
关键词 荔枝 病虫害检测 Faster R-CNN Swin Transformer 多尺度特征融合
在线阅读 下载PDF
飞机平尾夹芯蜂窝复合材料结构的超声智能检测技术
18
作者 涂思敏 陈振华 +3 位作者 章俊燕 涂东坤 徐云林 卢超 《复合材料科学与工程》 北大核心 2025年第10期83-90,共8页
飞机平尾的蜂窝复合材料结构尺寸大、材料结构复杂、质量要求高,喷水式超声聚焦成像检测技术可实现对蜂窝结构的成像检测;而大量检测图像的评价依赖于技术人员丰富的工程经验和高强度的工作,不可避免地会因主观因素的影响导致评价可靠性... 飞机平尾的蜂窝复合材料结构尺寸大、材料结构复杂、质量要求高,喷水式超声聚焦成像检测技术可实现对蜂窝结构的成像检测;而大量检测图像的评价依赖于技术人员丰富的工程经验和高强度的工作,不可避免地会因主观因素的影响导致评价可靠性变差。由此,提出基于深度学习网络的飞机平尾蜂窝复合材料超声C扫描检测图像的智能识别技术。首先,通过喷水式超声聚焦检测方法采集飞机平尾C扫描检测图像,构建和扩充飞机平尾超声检测图像数据集;其次,基于检测图像对应的检测信号幅度分布,将检测图像按粘接完好性程度划分为三个目标区域类别;第三,构建Faster R-CNN网络并对其进行优化,形成蜂窝复合材料结构超声C扫描区域微小特征变化的智能识别网络;最后,通过试验方法测定智能识别模型的性能,验证其评价蜂窝结构超声C扫描图像的能力。研究结果表明:基于深度学习的智能模型对蜂窝复合材料分类识别的平均准确率均值达到88.2%,对粘接状态最差区域(三类区域)的识别平均准确率可达91.9%,能够用于分类统计蜂窝复合材料结构超声C扫描检测图像。 展开更多
关键词 蜂窝复合材料 Faster R-CNN 喷水式超声聚焦检测 深度学习 智能识别
在线阅读 下载PDF
基于支持集特征增强的Meta Faster R-CNN小样本目标检测 被引量:1
19
作者 马俊光 文峰 殷向阳 《沈阳理工大学学报》 2025年第2期48-54,共7页
小样本目标检测的元学习方法能快速适应少量训练样本,较好解决现有常规检测模型泛化能力不强、适应新任务速度缓慢、鲁棒性差的问题,具有较高的实际应用价值,但该方法对支持集特征利用能力不足、检测精度不高。为此,基于支持集特征增强... 小样本目标检测的元学习方法能快速适应少量训练样本,较好解决现有常规检测模型泛化能力不强、适应新任务速度缓慢、鲁棒性差的问题,具有较高的实际应用价值,但该方法对支持集特征利用能力不足、检测精度不高。为此,基于支持集特征增强,针对元学习SOTA算法Meta Faster R-CNN进行改进,从支持集背景抑制与目标特征增强两个角度出发,削弱与待查询目标无关的背景信息并加强支持集内部特征之间的联系,构建一种检测性能更高的小样本目标检测算法。实验结果表明:在PASCAL VOC Novel Set数据集上的元测试阶段,本文改进算法在1-shot、2-shot、3-shot、5-shot、10-shot下的平均精度均值(mAP@0.5)较原算法分别提升了0.066%、12.038%、12.289%、10.073%、9.539%;在元微调后的测试阶段,本文改进算法的mAP@0.5较原算法有所提升或基本持平;增强支持集特征能够有效提升小样本目标检测精度。 展开更多
关键词 小样本目标检测 元学习 Meta Faster R-CNN 背景抑制 特征增强
在线阅读 下载PDF
改进FasterR-CNN的大型铸造不锈钢机匣超声相控阵检测图像的缺陷智能识别
20
作者 赵玉琦 李婧 +3 位作者 董德秀 黄鑫章 陈振华 卢超 《应用声学》 北大核心 2025年第2期497-504,共8页
大型铸造不锈钢机匣的超声相控阵检测技术具有检测能力强、检测效率高的优势。然而,相控阵图像中显示的缺陷类型仍需检测人员判读,存在主观性强、易误判、效率低、可靠性不足等问题。据此,提出基于深度学习的机匣超声相控阵检测图像缺... 大型铸造不锈钢机匣的超声相控阵检测技术具有检测能力强、检测效率高的优势。然而,相控阵图像中显示的缺陷类型仍需检测人员判读,存在主观性强、易误判、效率低、可靠性不足等问题。据此,提出基于深度学习的机匣超声相控阵检测图像缺陷类型的自动识别方法。首先,采集机匣典型铸造缺陷的超声相控阵图像,对缺陷图像扩充并制备数据集;其次,在FasterR-CNN深度学习网络的特征提取网络、多层特征信息融合网络、感兴趣区域模块等方面进行优化改进;最后,对比分析改进前后深度学习网络模型的缺陷识别与分类准确率。结果表明:相比于原始FasterR-CNN深度学习网络,在采用深度残差网络、特征金字塔网络、区域一致性池化等优化措施后,平均准确率均值提高至95.3%,模型对缺陷图像的识别精度得到了有效的提高;改进的FasterR-CNN目标识别算法克服了超声相控阵缺陷图像人工识别与分类的问题,具有较好的工程应用价值。 展开更多
关键词 超声相控阵检测 改进FasterR-CNN 缺陷智能识别
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部