期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
基于改进Faster R_CNN的苹果叶片病害检测模型 被引量:37
1
作者 李鑫然 李书琴 刘斌 《计算机工程》 CAS CSCD 北大核心 2021年第11期298-304,共7页
在实际条件下,苹果叶片病害图像背景复杂且病斑较小,难以进行实时检测。针对该问题,提出一种改进的Faster R_CNN模型。通过特征金字塔网络将具有细节信息的浅层特征和具有语义信息的深层特征融合,以提取丰富的苹果叶片病害特征。同时采... 在实际条件下,苹果叶片病害图像背景复杂且病斑较小,难以进行实时检测。针对该问题,提出一种改进的Faster R_CNN模型。通过特征金字塔网络将具有细节信息的浅层特征和具有语义信息的深层特征融合,以提取丰富的苹果叶片病害特征。同时采用精确感兴趣区域池化,避免感兴趣区域池化中2次量化操作对病斑较小的苹果叶片病害造成像素偏差。实验结果表明,该模型能对自然条件下5种苹果叶片病害进行有效检测,平均精度均值达82.48%,与Faster R_CNN、YOLOv3和Mask R_CNN模型相比,其平均精度均值分别提高了6.01、14.12和5.06个百分点。 展开更多
关键词 苹果叶片病害 病害检测 faster R_CNN模型 特征金字塔网络 精确感兴趣区域池化
在线阅读 下载PDF
基于Faster R-CNN模型的女西装领型识别
2
作者 陈友三 潘少芹 马燕红 《上海纺织科技》 2025年第8期44-47,共4页
选取Faster R-CNN作为主要模型,构建包含平驳领、戗驳领、青果领及无领4类领型的Blazer6480图像数据集。使用准确性(A)、精度(P)、召回率(R)、平均精度(AP)、平均精度均值(mAP)和F1评分关键指标全面评估Faster R-CNN模型在女西装衣领识... 选取Faster R-CNN作为主要模型,构建包含平驳领、戗驳领、青果领及无领4类领型的Blazer6480图像数据集。使用准确性(A)、精度(P)、召回率(R)、平均精度(AP)、平均精度均值(mAP)和F1评分关键指标全面评估Faster R-CNN模型在女西装衣领识别任务中的性能。试验结果表明:Faster R-CNN在复杂背景下的领型检测中召回率(73.8%)与平均精度(73.5%)均表现优异,但精确度(62.1%)仍需优化。研究结果可为服装属性识别提供技术参考,并为电商平台、服装智能制造等场景下的领型自动化分类提供实践指导。 展开更多
关键词 西装领型识别 faster R-CNN模型 Blazer6480数据集 增强策略
原文传递
基于改进Faster R-CNN模型的丁岙杨梅成熟度检测方法
3
作者 刘玉耀 彭琼尹 《湖北农业科学》 2025年第4期7-13,30,共8页
为了在复杂的自然生长环境中快速、精准地实现丁岙杨梅(Myrica rubra)不同成熟度检测,提出基于改进Faster R-CNN模型(ConvNeXt-T+SE+FPN)的丁岙杨梅成熟度检测方法。采用ConvNeXt-T作为主干特征提取网络,提升复杂场景下的检测能力;引入... 为了在复杂的自然生长环境中快速、精准地实现丁岙杨梅(Myrica rubra)不同成熟度检测,提出基于改进Faster R-CNN模型(ConvNeXt-T+SE+FPN)的丁岙杨梅成熟度检测方法。采用ConvNeXt-T作为主干特征提取网络,提升复杂场景下的检测能力;引入了SE注意力机制和特征金字塔网络(FPN),增强模型对丁岙杨梅不同成熟度特征敏感性以及小目标果实的检测能力。相较于ResNet50,ConvNeXt-T+SE、ConvNeXt-T+FPN、ConvNeXt-T+SE+FPN能够使模型的平均精度均值(mAP)分别提升14.75%、19.85%、21.86%,其中ConvNeXt-T+SE+FPN的mAP提升幅度最大,能够有效提高丁岙杨梅不同成熟度的检测性能。通过对丁岙杨梅图像数据集进行训练和测试,改进Faster R-CNN模型在不同成熟度果实的检测中表现出较高的准确性,对未成熟、半成熟、近成熟和全成熟果实识别的平均精度(AP)分别为96.90%、94.63%、95.91%、97.58%,mAP为96.26%;相比Faster R-CNN模型,改进Faster R-CNN模型的mAP提升了21.86%。改进Faster R-CNN模型能够有效提升丁岙杨梅成熟度的检测精度,给杨梅的智能化采摘提供有力支持。 展开更多
关键词 丁岙杨梅(Myrica rubra) 改进faster R-CNN模型 成熟度 检测
在线阅读 下载PDF
利用改进Faster-RCNN识别小麦条锈病和黄矮病 被引量:34
4
作者 毛锐 张宇晨 +4 位作者 王泽玺 高圣昌 祝涛 王美丽 胡小平 《农业工程学报》 EI CAS CSCD 北大核心 2022年第17期176-185,共10页
条锈病和黄矮病是严重威胁小麦生产的重大病害,病害的早期识别对病害防控具有重要意义。现有病害识别模型对相似表型症状识别困难,对早期病害的识别准确度低。为此,该研究构建了一种改进的快速区域卷积神经网络(Faster Regions with CNN... 条锈病和黄矮病是严重威胁小麦生产的重大病害,病害的早期识别对病害防控具有重要意义。现有病害识别模型对相似表型症状识别困难,对早期病害的识别准确度低。为此,该研究构建了一种改进的快速区域卷积神经网络(Faster Regions with CNN Features,Faster-RCNN)的病害识别方法。该方法采用卷积核拆解和下采样延迟策略优化了深度残差网络(Deep Residual Neural Network,ResNet-50),用优化后的ResNet-50作为主干特征提取网络以增强所提取特征的表达力,同时简化模型的参数;并采用ROI(Region of Interest)Align改进ROI迟化层以降低特征量化误差,提升识别的精度。在自建的涵盖200余种不同发病时期、不同抗感性的小麦叶部图像数据集上进行试验,结果表明:改进的Faster-RCNN识别方法比其他SSD(Single Shot Multi-Box Detector)、YOLO(You Only Look Once)和Faster-RCNN网络模型的平均精度均值(mean Average Precision,m AP)分别提升了9.26个百分点、7.64个百分点和14.97个百分点。对小麦条锈病、黄矮病、健康小麦和其他黄化症状小麦识别的平均精度均值可达98.74%;对小麦条锈病和黄矮病轻、重症识别的平均精度均值可达91.06%。同时,模型损失函数值降低更快,整体性能表现更优。进一步开发小麦病害智能识别系统部署研究模型,使用微信小程序进行田间小麦病害的识别。在最大并发100的条件下,小程序平均返回时延为5.02 s,识别返回成功率为97.85%,对两种小麦病害及其细分轻重症识别的平均准确率为93.56%,能够有效满足实际应用需求,可用于指导病害的科学防控。 展开更多
关键词 模型 病害识别 faster-RCNN ResNet 分组卷积 数据增强
在线阅读 下载PDF
基于改进Faster RCNN的安全帽佩戴检测研究 被引量:78
5
作者 徐守坤 王雅如 +3 位作者 顾玉宛 李宁 庄丽华 石林 《计算机应用研究》 CSCD 北大核心 2020年第3期901-905,共5页
针对已有安全帽佩戴检测算法对部分遮挡、尺寸不一和小目标存在检测难度大、准确率低的问题,提出了基于改进的Faster RCNN和多部件结合的安全帽佩戴检测方法。在原始Faster RCNN上运用多尺度训练和增加锚点数量增强网络检测不同尺寸目... 针对已有安全帽佩戴检测算法对部分遮挡、尺寸不一和小目标存在检测难度大、准确率低的问题,提出了基于改进的Faster RCNN和多部件结合的安全帽佩戴检测方法。在原始Faster RCNN上运用多尺度训练和增加锚点数量增强网络检测不同尺寸目标的鲁棒性,并引入防止正负样本不均衡的在线困难样本挖掘策略,然后对检测出的佩戴安全帽工人和安全帽等采用多部件结合方法剔除误检目标。实验表明,相比于原始Faster RCNN,检测准确率提高了7%,对环境的适应性更强。 展开更多
关键词 安全帽佩戴检测 faster RCNN 多尺度训练 在线困难样本挖掘 多部件结合
在线阅读 下载PDF
基于级联式Faster RCNN的三维目标最优抓取方法研究 被引量:24
6
作者 陈丹 林清泉 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第4期229-237,共9页
机器人在三维目标识别和最优抓取方面的难点在于复杂的背景环境以及目标物体形状不规则,且要求机器人像人一样在识别不同三维目标的同时要确定该目标的最佳抓取部位的位姿。提出一种基于级联式模型的深度学习方法来识别目标物体及其最... 机器人在三维目标识别和最优抓取方面的难点在于复杂的背景环境以及目标物体形状不规则,且要求机器人像人一样在识别不同三维目标的同时要确定该目标的最佳抓取部位的位姿。提出一种基于级联式模型的深度学习方法来识别目标物体及其最优抓取位姿。第1级提出了改进的Faster RCNN模型,该模型能识别成像小的目标物体,并能准确对其进行定位;第2级的Faster RCNN模型在前一级确定的目标物体上寻找该目标物体的最优抓取位姿,实现机器人的最优抓取。实验表明该方法能快速且准确地找到目标物体并确定其最优抓取位姿。 展开更多
关键词 深度学习 最优抓取 目标检测 faster RCNN模型
原文传递
基于Faster-RCNN的肺结节检测算法 被引量:12
7
作者 宋尚玲 杨阳 +1 位作者 李夏 冯浩 《中国生物医学工程学报》 CAS CSCD 北大核心 2020年第2期129-136,共8页
针对目前的肺结节检测中存在的个体差异、同病异影、同影异病的问题,提出一种大样本条件下的基于Faster-RCNN的肺结节检测算法,对比研究目前的深度学习模型的适应性,给出一种通用的随着样本数量增加肺结节检测率持续提升的策略。首先搭... 针对目前的肺结节检测中存在的个体差异、同病异影、同影异病的问题,提出一种大样本条件下的基于Faster-RCNN的肺结节检测算法,对比研究目前的深度学习模型的适应性,给出一种通用的随着样本数量增加肺结节检测率持续提升的策略。首先搭建深度学习的软硬件环境,设置影像数据接口与Faster-RCNN的网络接口匹配;然后搭建Faster-RCNN的单类分类网络,并对网络结构的参数进行调整优化;最后用包含2000例病人的肺结节数据集,通过不同的卷积神经网络模型(包括ZF和VGG),计算CT图像在各自模型中的特征。对测试结果进行分析评估,分别统计其漏检率、检测准确率,并探讨不同训练数量和数据增广类型对最终检测准确率的影响。最终ZF模型的检测准确率为90.82%,准确率的波动方差为13.30%;VGG模型的检测准确率为87.02%,准确率的波动方差为37.10%。ZF模型的波动方差小,检测精确度高,综合考虑,ZF模型对肺结节的检测效果优于VGG模型的检出效果。所提出的肺结节检测技术具有良好的理论价值和工程应用价值。 展开更多
关键词 faster-RCNN 肺结节检测 ZF模型 VGG模型 卷积神经网络
暂未订购
Faster R-CNN模型在车辆检测中的应用 被引量:67
8
作者 王林 张鹤鹤 《计算机应用》 CSCD 北大核心 2018年第3期666-670,共5页
针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入... 针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入图像进行卷积和池化等操作提取车辆特征,结合多尺度训练和难负样本挖掘策略降低复杂环境的影响,利用KITTI数据集对深度神经网络模型进行训练,并采集实际场景中的图像进行测试。仿真实验中,在保证检测时间的情况下,相对原Faster R-CNN算法检测精确度提高了约8%。实验结果表明,所提方法能够自动地提取车辆特征,解决了传统方法提取特征费时费力的问题,同时提高了车辆检测精确度,具有良好的泛化能力和适用范围。 展开更多
关键词 车辆检测 faster R-CNN模型 区域建议网络 难负样本挖掘 KITTI数据集
在线阅读 下载PDF
基于改进Faster R-CNN识别深度视频图像哺乳母猪姿态 被引量:54
9
作者 薛月菊 朱勋沐 +7 位作者 郑婵 毛亮 杨阿庆 涂淑琴 黄宁 杨晓帆 陈鹏飞 张南峰 《农业工程学报》 EI CAS CSCD 北大核心 2018年第9期189-196,共8页
猪舍场景下,昼夜交替光线变化、热灯光照影响,及仔猪与母猪的粘连等因素,给全天候哺乳母猪姿态自动识别带来很大困难。该文以深度视频图像为数据源,提出基于改进Faster R-CNN的哺乳母猪姿态识别算法。将残差结构引入ZF网络,设计ZF-D2R网... 猪舍场景下,昼夜交替光线变化、热灯光照影响,及仔猪与母猪的粘连等因素,给全天候哺乳母猪姿态自动识别带来很大困难。该文以深度视频图像为数据源,提出基于改进Faster R-CNN的哺乳母猪姿态识别算法。将残差结构引入ZF网络,设计ZF-D2R网络,以提高识别精度并保持实时性;将Center Loss监督信号引入Faster R-CNN训练中,以增强类内特征的内聚性,提升识别精度。对28栏猪的视频图像抽取站立、坐立、俯卧、腹卧和侧卧5类姿态共计7 541张图像作为训练集,另取5类姿态的5 000张图像作为测试集。该文提出的改进模型在测试集上对哺乳母猪的站立、坐立、俯卧、腹卧和侧卧5类姿态的识别平均准确率分别达到96.73%、94.62%、86.28%、89.57%和99.04%,5类姿态的平均准确率均值达到93.25%。在识别精度上,比ZF网络和层数更深的VGG16网络的平均准确率均值分别提高了3.86和1.24个百分点。识别速度为0.058 s/帧,比VGG16网络速度提高了0.034 s。该文方法在提高识别精度的同时保证了实时性,可为全天候母猪行为识别提供技术参考。 展开更多
关键词 图像识别 算法 模型 faster R-CNN 残差结构 CENTER LOSS 哺乳母猪 姿态识别
在线阅读 下载PDF
基于改进Faster R-CNN的手部位姿估计方法 被引量:7
10
作者 郑涵 田猛 +1 位作者 赵延峰 王先培 《科学技术与工程》 北大核心 2023年第3期1160-1167,共8页
基于视觉的手部位姿估计技术应用于诸多领域,具备着广泛的国际应用市场前景和巨大发展潜力。然而,手部自身存在检测目标过小、手指高自由度以及手部自遮挡等问题。通过对目前存在的难点分析,将手部位姿估计任务分为手部检测和手部关键... 基于视觉的手部位姿估计技术应用于诸多领域,具备着广泛的国际应用市场前景和巨大发展潜力。然而,手部自身存在检测目标过小、手指高自由度以及手部自遮挡等问题。通过对目前存在的难点分析,将手部位姿估计任务分为手部检测和手部关键点检测,提出基于改进的Faster R-CNN的手部位姿估计方法。首先提出基于改进的Faster R-CNN手部检测网络,将传统Faster R-CNN网络中的对ROI(regional of interest)的最大值池化,更改为ROI Align,并增加损失函数用于区分左右手。在此基础上增加了头网络分支用以训练输出MANO(hand model with articulated and non-rigid deformations)手部模型的姿态参数和形状参数,得到手部关键点三维坐标,最终得到手部的三维位姿估计结果。实验表明,手部检测结果中存在的自遮挡和尺度问题得到了解决,并且检测结果的准确性有所提高,本文手部检测算法准确率为85%,比传统Faster R-CNN算法提升13%。手部关键点提取算法在MSRA、ICVL、NYU三个数据集分别取得关键点坐标的均方误差值(key-point mean square error,KMSE)为7.50、6.32、8.50的结果。 展开更多
关键词 位姿估计 faster R-CNN 手部检测 MANO模型 多任务网络
在线阅读 下载PDF
基于Faster-rcnn的水下目标检测算法研究 被引量:8
11
作者 王璐 王雷欧 王东辉 《网络新媒体技术》 2021年第5期43-51,58,共10页
对海洋资源开发的关键是实现对水下目标实时而准确的检测,但由于水介质的吸收以及悬浮粒子的散射作用,水下待测目标往往存在颜色失真、对比度低等复杂问题,这极不利于准确评估目标检测算法的性能。本文提出一种基于Faster-rcnn的水下目... 对海洋资源开发的关键是实现对水下目标实时而准确的检测,但由于水介质的吸收以及悬浮粒子的散射作用,水下待测目标往往存在颜色失真、对比度低等复杂问题,这极不利于准确评估目标检测算法的性能。本文提出一种基于Faster-rcnn的水下目标检测算法,该算法以Faster-rcnn结构为主框架,将ResNet-101深度神经网络替代Faster-rcnn原本的VGG-16卷积神经网络作为特征提取和训练初始化的共享卷积网络,同时采用Water-Net网络对水下图像数据集进行增强处理,最后针对部分图像标签数据过少的问题采取了标签数据增强的方法。通过实验证明,数据集的增强性能有效提升检测算法的性能,且能满足实时检测的需求。 展开更多
关键词 水下目标检测 faster-rcnn模型 水下图像增强 Water-Net模型 数据增强
在线阅读 下载PDF
结合Faster R-CNN模型的遥感影像建筑物检测 被引量:16
12
作者 李东子 范大昭 苏亚龙 《测绘科学技术学报》 CSCD 北大核心 2018年第4期389-394,共6页
高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建... 高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建议网络生成初步检测结果;最后根据Fast R-CNN检测网络对结果进行进一步判定和边界回归。针对困难样本造成的训练中断,对训练策略进行改进,通过近似联合训练的方法对模型参数同步调优。实验结果表明,该方法准确率和召回率明显优于DPM方法,对非训练测试集遥感影像具有较好鲁棒性,有效实现了针对遥感影像的建筑物检测。 展开更多
关键词 遥感影像 建筑物检测 faster R-CNN模型 区域建议网络 近似联合训练
在线阅读 下载PDF
基于改进Faster-RCNN的自然场景人脸检测 被引量:17
13
作者 李祥兵 陈炼 《计算机工程》 CAS CSCD 北大核心 2021年第1期210-216,共7页
为实现对自然场景下小尺度人脸的准确检测,提出一种改进的Faster-RCNN模型。采用ResNet-50提取卷积特征,对不同卷积层的特征图进行多尺度融合,同时将区域建议网络产生的锚框由最初的9个改为15个,以更好地适应小尺度人脸检测场景。在此... 为实现对自然场景下小尺度人脸的准确检测,提出一种改进的Faster-RCNN模型。采用ResNet-50提取卷积特征,对不同卷积层的特征图进行多尺度融合,同时将区域建议网络产生的锚框由最初的9个改为15个,以更好地适应小尺度人脸检测场景。在此基础上,利用在线难例挖掘算法优化训练过程,采用软非极大值抑制方法解决漏检重叠人脸的问题,并在训练阶段通过多尺度训练提高模型的泛化能力。实验结果表明,该模型在Wider Face数据集上平均精度为89.0%,较原Faster-RCNN模型提升3.5%,在FDDB数据集上检出率也高达95.6%。 展开更多
关键词 人脸检测 faster-RCNN模型 多尺度融合 在线难例挖掘 软非极大值抑制
在线阅读 下载PDF
基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取 被引量:2
14
作者 董天成 杨肖 +2 位作者 李卉 张志 齐睿 《国土资源遥感》 CSCD 北大核心 2021年第1期129-137,共9页
青藏高原湖泊是高原生态环境中最重要的自然要素之一,实现青藏高原湖泊调查与监测是现阶段迫在眉睫的任务。由于水体在SAR图像上呈现出独特的镜面反射特征,使得利用SAR图像进行湖泊的提取与分析成为当下研究热点。为进一步排除干扰地物... 青藏高原湖泊是高原生态环境中最重要的自然要素之一,实现青藏高原湖泊调查与监测是现阶段迫在眉睫的任务。由于水体在SAR图像上呈现出独特的镜面反射特征,使得利用SAR图像进行湖泊的提取与分析成为当下研究热点。为进一步排除干扰地物影响、提高分类准确度,采用欧空局Sentinel-1A干涉宽幅模式的斜距单视复数产品(SLC)为主要数据源,Sentinel-2A多光谱影像Level-1C产品作为参考数据源,提出一种结合改进Faster R-CNN和MorphACWE轮廓模型的SAR图像湖泊提取算法(Faster Region-based Convolution Neural Network-MorphACWE,FR-MorphACWE)。该算法结合深度学习目标检测算法的高维特征分析和MorphACWE模型的边界提取,从综合干扰多湖泊提取角度进行分类实验评价,充分利用高原湖泊的形态学和雷达反射特征,实现西藏自治区那曲市南部至日喀则市北部高原湖泊高精度提取。实验结果表明,该算法在综合干扰多湖泊情境下准确率可达99.71%,精准率和召回率均高于98%,可作为SAR图像高原湖泊提取的新算法加以推广和应用。 展开更多
关键词 目标检测 faster R-CNN CV轮廓模型 合成孔径雷达 高原湖泊提取
在线阅读 下载PDF
基于改进Faster R-CNN模型的草莓果实识别算法 被引量:4
15
作者 李佳俊 朱子峰 +5 位作者 刘洪鑫 苏昱荣 温传闻 张原升 张慧敏 邓立苗 《湖北农业科学》 2023年第11期183-190,共8页
针对Faster R-CNN模型对自然状态下草莓(Fragaria ananassa Duch.)识别准确率不高的问题,以地垄种植草莓的实拍图片为数据源,采用改进RPN结构和更换主干特征提取网络的方法对Faster RCNN模型进行了改进。结果表明,改进Faster R-CNN模型... 针对Faster R-CNN模型对自然状态下草莓(Fragaria ananassa Duch.)识别准确率不高的问题,以地垄种植草莓的实拍图片为数据源,采用改进RPN结构和更换主干特征提取网络的方法对Faster RCNN模型进行了改进。结果表明,改进Faster R-CNN模型识别成熟草莓平均精度(AP)为0.893 0,识别未成熟草莓平均精度(AP)为0.820 7,草莓识别准确率达到较高水平,解决了未成熟草莓识别困难的问题。同时,为了检验模型的自动计数性能,依据模型的识别结果建立了自动计数与人工计数的线性回归,成熟草莓、未成熟草莓的相关系数分别为0.973 7、0.944 7,自动计数与人工计数拥有较高的相关性,表明改进Faster R-CNN模型具有较高的识别性能与计数能力。 展开更多
关键词 草莓(Fragaria ananassa Duch.) 识别 faster R-CNN模型 ResNet50
在线阅读 下载PDF
基于Faster rcnn的棉麻纱混纺比自动检测 被引量:5
16
作者 肖登辉 李立轻 汪军 《纺织器材》 2020年第3期1-4,共4页
为了解决人工检测棉麻纱混纺比存在主观性强且要求检测人员经验丰富的问题,提出利用Faster rcnn目标检测网络进行棉麻纱混纺比自动检测;通过制作数据集,训练得到Faster rcnn模型,并对模型进行评估;通过Faster rcnn模型在棉麻混纺纱的试... 为了解决人工检测棉麻纱混纺比存在主观性强且要求检测人员经验丰富的问题,提出利用Faster rcnn目标检测网络进行棉麻纱混纺比自动检测;通过制作数据集,训练得到Faster rcnn模型,并对模型进行评估;通过Faster rcnn模型在棉麻混纺纱的试验,在测试集上的平均精度的均值(mAP)为0.905,在实验中验证检测的棉麻混纺比与实际标准值的误差基本吻合。指出:利用Faster rcnn网络模型作为自动化检测棉麻纤维核心算法具有可行性和可靠性;该检测方法精度高,在制样以及图片采集过程中存在耗时、耗力的问题,需持续改进。 展开更多
关键词 faster rcnn 目标检测 棉纤维 麻纤维 混纺比 图像 模型
在线阅读 下载PDF
A Study on Small Pest Detection Based on a CascadeR-CNN-Swin Model 被引量:2
17
作者 Man-Ting Li Sang-Hyun Lee 《Computers, Materials & Continua》 SCIE EI 2022年第9期6155-6165,共11页
This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In ... This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In this paper,since the amount of data collected for deep learning is insufficient,we intend to use the efficient feature extraction function of the neural network based on the Transformer algorithm.We want to use the Cascade Region-based Convolutional Neural Networks(Cascade R-CNN)Swin model,which is a mixture of the transformer model and Cascade R-CNN model to detect greening disease occurring in citrus.In this paper,we try to improve model safety by establishing a linear relationship between samples using Mixup and Cutmix algorithms,which are image processing-based data augmentation techniques.In addition,by using the ImageNet dataset,transfer learning,and stochastic weight averaging(SWA)methods,more accuracy can be obtained.This study compared the Faster Region-based Convolutional Neural Networks Residual Network101(Faster R-CNN ResNet101)model,Cascade Regionbased Convolutional Neural Networks Residual Network101(Cascade RCNN-ResNet101)model,and Cascade R-CNN Swin Model.As a result,the Faster R-CNN ResNet101 model came out as Average Precision(AP)(Intersection over Union(IoU)=0.5):88.2%,AP(IoU=0.75):62.8%,Recall:68.2%,and the Cascade R-CNN ResNet101 model was AP(IoU=0.5):91.5%,AP(IoU=0.75):67.2%,Recall:73.1%.Alternatively,the Cascade R-CNN Swin Model showed AP(IoU=0.5):94.9%,AP(IoU=0.75):79.8%and Recall:76.5%.Thus,the Cascade R-CNN Swin Model showed the best results for detecting citrus greening disease. 展开更多
关键词 Cascade R-CNN swin model cascade R-CNN resNet101 model faster R-CNN ResNet101 model mixup cutmix
在线阅读 下载PDF
基于Faster R-CNN的颜色导向火焰检测 被引量:7
18
作者 黄杰 巢夏晨语 +5 位作者 董翔宇 高云 朱俊 杨波 张飞 尚伟伟 《计算机应用》 CSCD 北大核心 2020年第5期1470-1475,共6页
基于深度特征的目标检测方法Faster R-CNN在火焰检测任务上存在检测效率低的问题,因此提出了基于颜色引导的抛锚策略。该策略设计火焰颜色模型来限制锚的生成,即利用火焰颜色约束锚的生成区域,从而减少了初始锚的数量,提升了计算效率。... 基于深度特征的目标检测方法Faster R-CNN在火焰检测任务上存在检测效率低的问题,因此提出了基于颜色引导的抛锚策略。该策略设计火焰颜色模型来限制锚的生成,即利用火焰颜色约束锚的生成区域,从而减少了初始锚的数量,提升了计算效率。为了进一步提高网络的计算效率,将区域生成网络中的卷积层替换成掩膜卷积。为了验证所提方法的检测效果,采用BoWFire和Corsician数据集进行验证。实验结果表明,该方法实际检测速度相较于原Faster R-CNN提高了10.1%,BoWFire上该方法的火焰检测F值为0.87,Corsician上该方法的准确度可达99.33%。所提方法可以提高火焰检测的效率,并能够准确检测图像中的火焰。 展开更多
关键词 火焰检测 颜色模型 卷积神经网络 faster R-CNN
在线阅读 下载PDF
基于Faster-RCNN网络的蔬菜幼苗识别检测 被引量:4
19
作者 都泽鑫 孟鸿晨 +3 位作者 宋名果 张志鹏 李雪峰 孟庆宽 《热带农业工程》 2022年第2期42-46,共5页
田间杂草容易对蔬菜生长产生不利影响,快速准确的检测蔬菜幼苗并去除杂草对提高蔬菜产量和质量有较大影响。针对复杂农业环境下常规蔬菜幼苗识别方法存在的识别精度低、检测速度慢等问题,本文将Faster-RCNN模型引入到蔬菜幼苗识别检测中... 田间杂草容易对蔬菜生长产生不利影响,快速准确的检测蔬菜幼苗并去除杂草对提高蔬菜产量和质量有较大影响。针对复杂农业环境下常规蔬菜幼苗识别方法存在的识别精度低、检测速度慢等问题,本文将Faster-RCNN模型引入到蔬菜幼苗识别检测中,先采用Resnet50残差网络作为前置基础网络提取作物特征,然后将特征送入候选区域建议网络进行先验框调整,最后通过感兴趣区域池化网络和全连接层完成目标分类定位。将检测完成的蔬菜幼苗检测模型部署在NVIDIA Jetson TX2嵌入式平台进行测试,蔬菜幼苗平均识别率达到93.92%,平均检测时间为34.4 ms,具有识别速度快和准确率高等优点。本方法可以为后续农业智能装备精准作业所涉及的蔬菜幼苗检测问题提供新方案。 展开更多
关键词 深度学习 作物识别 蔬菜幼苗 faster-RCNN模型
在线阅读 下载PDF
融合注意力机制和Faster R-CNN的织物疵点检测算法 被引量:8
20
作者 陈梦琦 余灵婕 +2 位作者 支超 祝双武 郜仲元 《纺织高校基础科学学报》 CAS 2021年第4期46-52,共7页
针对织物疵点纹理多变、类型多样和尺度不一的特点,提出了优化Faster R-CNN疵点检测模型。将基于卷积模块的注意力机制(convolutional block attention module,CBAM)引入经典Faster R-CNN模型中,对建立的6317张包含污渍、破洞、跳花、... 针对织物疵点纹理多变、类型多样和尺度不一的特点,提出了优化Faster R-CNN疵点检测模型。将基于卷积模块的注意力机制(convolutional block attention module,CBAM)引入经典Faster R-CNN模型中,对建立的6317张包含污渍、破洞、跳花、断经、断纬、缺经、缺纬和并纬等疵点的织物图片样本库进行CBAM的改进模型与原模型对比实验。结果表明:优化后的网络模型能有效提高织物疵点识别的精度和检测速度,模型的平均精度均值和准确率均值分别从77.01%、61.55%提升到78.81%、64.37%;同时,单张图像的平均检测时间也明显缩短。 展开更多
关键词 织物疵点检测 注意力机制 faster R-CNN模型 精度 准确率
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部