期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Faster R-CNN模型在车辆检测中的应用 被引量:67
1
作者 王林 张鹤鹤 《计算机应用》 CSCD 北大核心 2018年第3期666-670,共5页
针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入... 针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入图像进行卷积和池化等操作提取车辆特征,结合多尺度训练和难负样本挖掘策略降低复杂环境的影响,利用KITTI数据集对深度神经网络模型进行训练,并采集实际场景中的图像进行测试。仿真实验中,在保证检测时间的情况下,相对原Faster R-CNN算法检测精确度提高了约8%。实验结果表明,所提方法能够自动地提取车辆特征,解决了传统方法提取特征费时费力的问题,同时提高了车辆检测精确度,具有良好的泛化能力和适用范围。 展开更多
关键词 车辆检测 faster r-cnn模型 区域建议网络 难负样本挖掘 KITTI数据集
在线阅读 下载PDF
基于改进Faster R-CNN的手部位姿估计方法 被引量:7
2
作者 郑涵 田猛 +1 位作者 赵延峰 王先培 《科学技术与工程》 北大核心 2023年第3期1160-1167,共8页
基于视觉的手部位姿估计技术应用于诸多领域,具备着广泛的国际应用市场前景和巨大发展潜力。然而,手部自身存在检测目标过小、手指高自由度以及手部自遮挡等问题。通过对目前存在的难点分析,将手部位姿估计任务分为手部检测和手部关键... 基于视觉的手部位姿估计技术应用于诸多领域,具备着广泛的国际应用市场前景和巨大发展潜力。然而,手部自身存在检测目标过小、手指高自由度以及手部自遮挡等问题。通过对目前存在的难点分析,将手部位姿估计任务分为手部检测和手部关键点检测,提出基于改进的Faster R-CNN的手部位姿估计方法。首先提出基于改进的Faster R-CNN手部检测网络,将传统Faster R-CNN网络中的对ROI(regional of interest)的最大值池化,更改为ROI Align,并增加损失函数用于区分左右手。在此基础上增加了头网络分支用以训练输出MANO(hand model with articulated and non-rigid deformations)手部模型的姿态参数和形状参数,得到手部关键点三维坐标,最终得到手部的三维位姿估计结果。实验表明,手部检测结果中存在的自遮挡和尺度问题得到了解决,并且检测结果的准确性有所提高,本文手部检测算法准确率为85%,比传统Faster R-CNN算法提升13%。手部关键点提取算法在MSRA、ICVL、NYU三个数据集分别取得关键点坐标的均方误差值(key-point mean square error,KMSE)为7.50、6.32、8.50的结果。 展开更多
关键词 位姿估计 faster r-cnn 手部检测 MANO模型 多任务网络
在线阅读 下载PDF
结合Faster R-CNN模型的遥感影像建筑物检测 被引量:16
3
作者 李东子 范大昭 苏亚龙 《测绘科学技术学报》 CSCD 北大核心 2018年第4期389-394,共6页
高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建... 高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建议网络生成初步检测结果;最后根据Fast R-CNN检测网络对结果进行进一步判定和边界回归。针对困难样本造成的训练中断,对训练策略进行改进,通过近似联合训练的方法对模型参数同步调优。实验结果表明,该方法准确率和召回率明显优于DPM方法,对非训练测试集遥感影像具有较好鲁棒性,有效实现了针对遥感影像的建筑物检测。 展开更多
关键词 遥感影像 建筑物检测 faster r-cnn模型 区域建议网络 近似联合训练
在线阅读 下载PDF
Detection of ocean internal waves based on Faster R-CNN in SAR images 被引量:11
4
作者 BAO Sude MENG Junmin +1 位作者 SUN Lina LIU Yongxin 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第1期55-63,共9页
Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular rese... Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks. 展开更多
关键词 ocean internal waves faster regions with convolutional NEURAL network features (faster r-cnn) convolutional NEURAL network synthetic APERTURE radar (SAR) image region proposal network (RPN)
在线阅读 下载PDF
基于Faster R-CNN的自动扶梯乘客异常位姿检测研究 被引量:3
5
作者 徐火力 黄学斌 +2 位作者 郑祥盘 李佐勇 伏喜斌 《设备监理》 2021年第1期45-51,61,共8页
针对扶梯运行时光照的变化、阴影、背景中固定对象的移动等因素严重影响机器视觉检测精度问题,为了提高对扶梯乘客位姿目标的检测精度和效率,采用VGG16卷积神经网络作为Faster-RCNN(Faster-Regions with CNN features)的基础网络,提出... 针对扶梯运行时光照的变化、阴影、背景中固定对象的移动等因素严重影响机器视觉检测精度问题,为了提高对扶梯乘客位姿目标的检测精度和效率,采用VGG16卷积神经网络作为Faster-RCNN(Faster-Regions with CNN features)的基础网络,提出基于改进Faster R-CNN的扶梯乘客异常位姿实时检测改进算法。首先Faster R-CNN对视频图像进行全卷积操作得到特征图,再通过RPN层得到被测对象的类别分数以及对象物体所在原图中所在的位置,利用Faster R-CNN算法处理后的图像得到扶梯上乘客诸如下蹲、身体弯曲等异常位姿,从而判断乘客是否处于危险状态。实验结果表明:FasterR-CNN的检测算法能准确实时地识别出扶梯乘客的危险位姿,从而实现控制系统及时做出相应的安全保护措施,提高自动扶梯运行的安全性能。 展开更多
关键词 自动扶梯 faster r-cnn RPN模型 位姿检测 卷积神经网络
在线阅读 下载PDF
Small objects detection in UAV aerial images based on improved Faster R-CNN 被引量:8
6
作者 WANG Ji-wu LUO Hai-bao +1 位作者 YU Peng-fei LI Chen-yang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期11-16,共6页
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo... In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images. 展开更多
关键词 faster region-based convolutional neural network(faster r-cnn) ResNet101 unmanned aerial vehicle(UAV) small objects detection bird’s nest
在线阅读 下载PDF
Mask R-CNN and multifeature clustering model for catenary insulator recognition and defect detection 被引量:11
7
作者 Ping TAN Xu-feng LI +5 位作者 Jin DING Zhi-sheng CUI Ji-en MA Yue-lan SUN Bing-qiang HUANG You-tong FANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第9期745-756,共12页
Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators... Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators and detect defects automatically.In this paper,we propose a catenary intelligent defect detection algorithm based on Mask region-convolutional neural network(R-CNN)and an image processing model.Vertical projection technology is used to achieve single shed positioning and precise cutting of the insulator.Gradient,texture,and gray feature fusion(GTGFF)and a K-means clustering analysis model(KCAM)are proposed to detect broken insulators,dirt,foreign bodies,and flashover.Using this model,insulator recognition and defect detection can achieve a high recall rate and accuracy,and generalized defect detection.The algorithm is tested and verified on a dataset of realistic insulator images,and the accuracy and reliability of the algorithm satisfy current requirements for HSR catenary automatic inspection and intelligent maintenance. 展开更多
关键词 High speed railway(HSR)catenary insulator Mask region-convolutional neural network(r-cnn) Multifeature fusion K-means clustering analysis model(KCAM) Defect detection
原文传递
A Study on Small Pest Detection Based on a CascadeR-CNN-Swin Model 被引量:2
8
作者 Man-Ting Li Sang-Hyun Lee 《Computers, Materials & Continua》 SCIE EI 2022年第9期6155-6165,共11页
This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In ... This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In this paper,since the amount of data collected for deep learning is insufficient,we intend to use the efficient feature extraction function of the neural network based on the Transformer algorithm.We want to use the Cascade Region-based Convolutional Neural Networks(Cascade R-CNN)Swin model,which is a mixture of the transformer model and Cascade R-CNN model to detect greening disease occurring in citrus.In this paper,we try to improve model safety by establishing a linear relationship between samples using Mixup and Cutmix algorithms,which are image processing-based data augmentation techniques.In addition,by using the ImageNet dataset,transfer learning,and stochastic weight averaging(SWA)methods,more accuracy can be obtained.This study compared the Faster Region-based Convolutional Neural Networks Residual Network101(Faster R-CNN ResNet101)model,Cascade Regionbased Convolutional Neural Networks Residual Network101(Cascade RCNN-ResNet101)model,and Cascade R-CNN Swin Model.As a result,the Faster R-CNN ResNet101 model came out as Average Precision(AP)(Intersection over Union(IoU)=0.5):88.2%,AP(IoU=0.75):62.8%,Recall:68.2%,and the Cascade R-CNN ResNet101 model was AP(IoU=0.5):91.5%,AP(IoU=0.75):67.2%,Recall:73.1%.Alternatively,the Cascade R-CNN Swin Model showed AP(IoU=0.5):94.9%,AP(IoU=0.75):79.8%and Recall:76.5%.Thus,the Cascade R-CNN Swin Model showed the best results for detecting citrus greening disease. 展开更多
关键词 Cascade r-cnn swin model cascade r-cnn resNet101 model faster r-cnn ResNet101 model mixup cutmix
在线阅读 下载PDF
基于Faster R-CNN的颜色导向火焰检测 被引量:7
9
作者 黄杰 巢夏晨语 +5 位作者 董翔宇 高云 朱俊 杨波 张飞 尚伟伟 《计算机应用》 CSCD 北大核心 2020年第5期1470-1475,共6页
基于深度特征的目标检测方法Faster R-CNN在火焰检测任务上存在检测效率低的问题,因此提出了基于颜色引导的抛锚策略。该策略设计火焰颜色模型来限制锚的生成,即利用火焰颜色约束锚的生成区域,从而减少了初始锚的数量,提升了计算效率。... 基于深度特征的目标检测方法Faster R-CNN在火焰检测任务上存在检测效率低的问题,因此提出了基于颜色引导的抛锚策略。该策略设计火焰颜色模型来限制锚的生成,即利用火焰颜色约束锚的生成区域,从而减少了初始锚的数量,提升了计算效率。为了进一步提高网络的计算效率,将区域生成网络中的卷积层替换成掩膜卷积。为了验证所提方法的检测效果,采用BoWFire和Corsician数据集进行验证。实验结果表明,该方法实际检测速度相较于原Faster R-CNN提高了10.1%,BoWFire上该方法的火焰检测F值为0.87,Corsician上该方法的准确度可达99.33%。所提方法可以提高火焰检测的效率,并能够准确检测图像中的火焰。 展开更多
关键词 火焰检测 颜色模型 卷积神经网络 faster r-cnn
在线阅读 下载PDF
Object detection of artifact threaded hole based on Faster R-CNN 被引量:2
10
作者 ZHANG Zhengkai QI Lang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期107-114,共8页
In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based ... In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network(Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set.Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy. 展开更多
关键词 object detection threaded hole deep learning region-based convolutional neural network(faster r-cnn) Hough transform
在线阅读 下载PDF
基于改进Faster R-CNN算法的两轮车视频检测 被引量:5
11
作者 邝先验 李洪伟 杨柳 《现代电子技术》 北大核心 2020年第9期129-134,共6页
针对城市道路交通视频中两轮车检测经常遇到的误检、漏检频繁,小尺度两轮车检测效果不佳等问题,设计了一种基于改进的Faster R-CNN算法的两轮车视频检测模型。模型修改了锚点的参数,并构建了一种多尺度特征融合的区域建议网络(RPN)结构... 针对城市道路交通视频中两轮车检测经常遇到的误检、漏检频繁,小尺度两轮车检测效果不佳等问题,设计了一种基于改进的Faster R-CNN算法的两轮车视频检测模型。模型修改了锚点的参数,并构建了一种多尺度特征融合的区域建议网络(RPN)结构,使得模型对小尺度目标更加敏感。针对两轮车数据集匮乏,采用迁移学习的方法进行学习并获得两轮车检测的最终模型。实验结果表明,改进后的算法可以有效解决交通视频中小尺度两轮车的检测问题,在两轮车数据集上获得了98.94%的精确率。 展开更多
关键词 两轮车视频检测 两轮车检测模型 改进faster r-cnn算法 RPN网络 参数修改 多尺度特征融合
在线阅读 下载PDF
Detection of Left Ventricular Cavity from Cardiac MRI Images Using Faster R-CNN
12
作者 Zakarya Farea Shaaf Muhammad Mahadi Abdul Jamil +3 位作者 Radzi Ambar Ahmed Abdu Alattab Anwar Ali Yahya Yousef Asiri 《Computers, Materials & Continua》 SCIE EI 2023年第1期1819-1835,共17页
The automatic localization of the left ventricle(LV)in short-axis magnetic resonance(MR)images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interes... The automatic localization of the left ventricle(LV)in short-axis magnetic resonance(MR)images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interest(ROI).The precise extraction of the LV’s ROI from cardiac MRI images is crucial for detecting heart disorders via cardiac segmentation or registration.Nevertheless,this task appears to be intricate due to the diversities in the size and shape of the LV and the scattering of surrounding tissues across different slices.Thus,this study proposed a region-based convolutional network(Faster R-CNN)for the LV localization from short-axis cardiac MRI images using a region proposal network(RPN)integrated with deep feature classification and regression.Themodel was trained using images with corresponding bounding boxes(labels)around the LV,and various experiments were applied to select the appropriate layers and set the suitable hyper-parameters.The experimental findings showthat the proposed modelwas adequate,with accuracy,precision,recall,and F1 score values of 0.91,0.94,0.95,and 0.95,respectively.This model also allows the cropping of the detected area of LV,which is vital in reducing the computational cost and time during segmentation and classification procedures.Therefore,itwould be an ideal model and clinically applicable for diagnosing cardiac diseases. 展开更多
关键词 Cardiac short-axis MRI images automatic left ventricle localization deep learning models faster r-cnn
在线阅读 下载PDF
基于FR-CNN-CAC的高速公路交通流拥堵算法模型研究
13
作者 郭鹏 王兴成 《通信与信息技术》 2025年第S1期108-116,共9页
针对高速公路匝道出入口或者桥梁入口等交通拥堵的高发区,由于车辆密集汇聚而出现瓶颈的问题,探索在不增加物理基础设施的前提下如何更高效地利用现有资源来预防和缓解拥堵状况,提出了基于FR-CNN-CAC的高速公路交通流拥堵算法模型让交... 针对高速公路匝道出入口或者桥梁入口等交通拥堵的高发区,由于车辆密集汇聚而出现瓶颈的问题,探索在不增加物理基础设施的前提下如何更高效地利用现有资源来预防和缓解拥堵状况,提出了基于FR-CNN-CAC的高速公路交通流拥堵算法模型让交通管理的效率与质量得到提升。该模型通过Faster R-CNN目标检测算法来对高速公路视频监控数据进行数据提取与分析,计算对应监控点车流量、车流密度、车辆速度等交通流参数构建交通拥堵流模型,然后通过交通流参数的倾向匹配得分结果评估得出的监控点拥堵级别对应急车道启用做出决策,再应用编码技术将这些数据提供给因果卷积神经网络(Causal Convolutional Neural Networks,CAC)模型对各监测点的交通流进行预测,得到可能的交通拥堵情况。实验表明,FR-CNN-CAC模型紧密贴合实际需求,能够有效解决高速公路应急车道的启动问题,具备较强的实用性和高效的算法性能。此外,该模型在交通疏导、道路清障、交通事故处理及监控设计等多个领域同样具有广泛的应用潜力。 展开更多
关键词 交通流拥堵模型 faster r-cnn 倾向得分匹配 因果卷积神经网络
在线阅读 下载PDF
基于Faster-RCNN的肺结节检测算法 被引量:12
14
作者 宋尚玲 杨阳 +1 位作者 李夏 冯浩 《中国生物医学工程学报》 CAS CSCD 北大核心 2020年第2期129-136,共8页
针对目前的肺结节检测中存在的个体差异、同病异影、同影异病的问题,提出一种大样本条件下的基于Faster-RCNN的肺结节检测算法,对比研究目前的深度学习模型的适应性,给出一种通用的随着样本数量增加肺结节检测率持续提升的策略。首先搭... 针对目前的肺结节检测中存在的个体差异、同病异影、同影异病的问题,提出一种大样本条件下的基于Faster-RCNN的肺结节检测算法,对比研究目前的深度学习模型的适应性,给出一种通用的随着样本数量增加肺结节检测率持续提升的策略。首先搭建深度学习的软硬件环境,设置影像数据接口与Faster-RCNN的网络接口匹配;然后搭建Faster-RCNN的单类分类网络,并对网络结构的参数进行调整优化;最后用包含2000例病人的肺结节数据集,通过不同的卷积神经网络模型(包括ZF和VGG),计算CT图像在各自模型中的特征。对测试结果进行分析评估,分别统计其漏检率、检测准确率,并探讨不同训练数量和数据增广类型对最终检测准确率的影响。最终ZF模型的检测准确率为90.82%,准确率的波动方差为13.30%;VGG模型的检测准确率为87.02%,准确率的波动方差为37.10%。ZF模型的波动方差小,检测精确度高,综合考虑,ZF模型对肺结节的检测效果优于VGG模型的检出效果。所提出的肺结节检测技术具有良好的理论价值和工程应用价值。 展开更多
关键词 faster-RCNN 肺结节检测 ZF模型 VGG模型 卷积神经网络
暂未订购
基于改进Faster R_CNN的苹果叶片病害检测模型 被引量:37
15
作者 李鑫然 李书琴 刘斌 《计算机工程》 CAS CSCD 北大核心 2021年第11期298-304,共7页
在实际条件下,苹果叶片病害图像背景复杂且病斑较小,难以进行实时检测。针对该问题,提出一种改进的Faster R_CNN模型。通过特征金字塔网络将具有细节信息的浅层特征和具有语义信息的深层特征融合,以提取丰富的苹果叶片病害特征。同时采... 在实际条件下,苹果叶片病害图像背景复杂且病斑较小,难以进行实时检测。针对该问题,提出一种改进的Faster R_CNN模型。通过特征金字塔网络将具有细节信息的浅层特征和具有语义信息的深层特征融合,以提取丰富的苹果叶片病害特征。同时采用精确感兴趣区域池化,避免感兴趣区域池化中2次量化操作对病斑较小的苹果叶片病害造成像素偏差。实验结果表明,该模型能对自然条件下5种苹果叶片病害进行有效检测,平均精度均值达82.48%,与Faster R_CNN、YOLOv3和Mask R_CNN模型相比,其平均精度均值分别提高了6.01、14.12和5.06个百分点。 展开更多
关键词 苹果叶片病害 病害检测 faster R_CNN模型 特征金字塔网络 精确感兴趣区域池化
在线阅读 下载PDF
A Study on Cascade R-CNN-Based Dangerous Goods Detection Using X-Ray Image 被引量:1
16
作者 Sang-Hyun Lee 《Computers, Materials & Continua》 SCIE EI 2022年第11期4245-4260,共16页
X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of go... X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of goods,unauthorized transport,or hidden goods in real-time by-passing cargo through X-rays without opening it.In this paper,we propose a system for detecting dangerous objects in X-ray images using the Cascade Region-based Convolutional Neural Network(Cascade R-CNN)model,and the data used for learning consists of dangerous goods,storage media,firearms,and knives.In addition,to minimize the overfitting problem caused by the lack of data to be used for artificial intelligence(AI)training,data samples are increased by using the CP(copy-paste)algorithm on the existing data.It also solves the data labeling problem by mixing supervised and semi-supervised learning.The four comparative models to be used in this study are Faster Regionbased Convolutional Neural Networks Residual2 Network-101(Faster R-CNN_Res2Net-101)supervised learning,Cascade R-CNN_Res2Net-101_supervised learning,Cascade Region-based Convolutional Neural Networks Composite Backbone Network V2(CBNetV2)Network-101(Cascade R-CNN_CBNetV2Net-101)_supervised learning,and Cascade RCNN_CBNetV2-101_semi-supervised learning which are then compared and evaluated.As a result of comparing the performance of the four models in this paper,in case of Cascade R-CNN_CBNetV2-101_semi-supervised learning,Average Precision(AP)(Intersection over Union(IoU)=0.5):0.7%,AP(IoU=0.75):1.0%than supervised learning,Recall:0.8%higher. 展开更多
关键词 Cascade r-cnn model faster r-cnn model X-ray screening equipment Res2Net supervised learning semi-supervised learning
在线阅读 下载PDF
Leguminous seeds detection based on convolutional neural networks:Comparison of Faster R-CNN and YOLOv4 on a small custom dataset 被引量:2
17
作者 Noran S.Ouf 《Artificial Intelligence in Agriculture》 2023年第2期30-45,共16页
This paper help with leguminous seeds detection and smart farming. There are hundreds of kinds of seeds and itcan be very difficult to distinguish between them. Botanists and those who study plants, however, can ident... This paper help with leguminous seeds detection and smart farming. There are hundreds of kinds of seeds and itcan be very difficult to distinguish between them. Botanists and those who study plants, however, can identifythe type of seed at a glance. As far as we know, this is the first work to consider leguminous seeds images withdifferent backgrounds and different sizes and crowding. Machine learning is used to automatically classify andlocate 11 different seed types. We chose Leguminous seeds from 11 types to be the objects of this study. Thosetypes are of different colors, sizes, and shapes to add variety and complexity to our research. The images datasetof the leguminous seeds was manually collected, annotated, and then split randomly into three sub-datasetstrain, validation, and test (predictions), with a ratio of 80%, 10%, and 10% respectively. The images consideredthe variability between different leguminous seed types. The images were captured on five different backgrounds: white A4 paper, black pad, dark blue pad, dark green pad, and green pad. Different heights and shootingangles were considered. The crowdedness of the seeds also varied randomly between 1 and 50 seeds per image.Different combinations and arrangements between the 11 types were considered. Two different image-capturingdevices were used: a SAMSUNG smartphone camera and a Canon digital camera. A total of 828 images wereobtained, including 9801 seed objects (labels). The dataset contained images of different backgrounds, heights,angles, crowdedness, arrangements, and combinations. The TensorFlow framework was used to construct theFaster Region-based Convolutional Neural Network (R-CNN) model and CSPDarknet53 is used as the backbonefor YOLOv4 based on DenseNet designed to connect layers in convolutional neural. Using the transfer learningmethod, we optimized the seed detection models. The currently dominant object detection methods, Faster RCNN, and YOLOv4 performances were compared experimentally. The mAP (mean average precision) of the FasterR-CNN and YOLOv4 models were 84.56% and 98.52% respectively. YOLOv4 had a significant advantage in detection speed over Faster R-CNN which makes it suitable for real-time identification as well where high accuracy andlow false positives are needed. The results showed that YOLOv4 had better accuracy, and detection ability, as wellas faster detection speed beating Faster R-CNN by a large margin. The model can be effectively applied under avariety of backgrounds, image sizes, seed sizes, shooting angles, and shooting heights, as well as different levelsof seed crowding. It constitutes an effective and efficient method for detecting different leguminous seeds incomplex scenarios. This study provides a reference for further seed testing and enumeration applications. 展开更多
关键词 Machine learning Object detection Leguminous seeds Deep learning Convolutional neural networks faster r-cnn YOLOv4
原文传递
基于人工智能分析视频图像数据的发电机故障自动化监测系统设计
18
作者 彭雄新 《电子设计工程》 2025年第22期182-186,共5页
为快速识别特征并实现24小时不间断的发电机故障自动化监测,设计了基于人工智能分析视频图像数据的发电机故障自动化监测系统。利用太阳能供电设备为监控摄像机持续供电,摄像机采集发电机视频图像,经总线侦听电路传至自动化识别逻辑处... 为快速识别特征并实现24小时不间断的发电机故障自动化监测,设计了基于人工智能分析视频图像数据的发电机故障自动化监测系统。利用太阳能供电设备为监控摄像机持续供电,摄像机采集发电机视频图像,经总线侦听电路传至自动化识别逻辑处理模块。该模块利用机器视觉技术对图像进行灰度转换、分割,将结果输入到FasterR-CNN网络模型,经卷积特征提取等处理后输出故障识别结果,通过系统远程监控终端显示器呈现给用户,实现自动化监测。实验表明,该系统具备较强的发电机视频图像灰度化和分割能力,可准确识别发电机故障,发电机数量统计准确率为100%,监控摄像机数量统计准确率为98.5%,并通过自动化监控终端呈现发电机故障监测结果。 展开更多
关键词 人工智能 视频图像 发电机 自动化监测 监控终端 fasterr-cnn网络模型
在线阅读 下载PDF
基于深度学习的肺炎图像目标检测 被引量:6
19
作者 何迪 刘立新 +3 位作者 刘玉杰 熊丰 齐美捷 张周锋 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期443-451,共9页
肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑... 肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑的机制准确高效地解释医学图像数据,在肺炎图像检测方面获得了广泛应用。构建了3种基于深度学习的图像目标检测模型,单发多框探测器(SSD)、faster-RCNN和faster-RCNN优化模型,对来自Kaggle数据集的26 684张带标签的肺部X光图像进行研究。原始X光图像经预处理后输入3种深度学习模型,分别对单处和两处病灶区域进行目标检测。随机选取500张测试图像,利用损失函数、分类准确率、回归精度和误检病灶数等指标对各模型的性能进行评估。结果表明,faster-RCNN的性能指标优于SSD;Faster-RCNN优化模型的性能指标均优于其他两种模型,其损失函数值小且可快速达到稳定,平均分类准确率为93.7%,平均回归精度为79.8%,且误检病灶数为0。该方法有助于肺炎的准确识别和诊断。 展开更多
关键词 目标检测 肺炎图像 深度学习 更快速区域卷积神经网络(faster-RCNN)模型 单发多框探测器(SSD)模型
暂未订购
地铁乘务排班计划优化的最短路快速算法 被引量:10
20
作者 薛锋 梁鹏 +2 位作者 李海 陈崇双 周天星 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2022年第9期2532-2540,共9页
乘务排班计划是城市轨道交通运营管理中的重要环节,为了解决目前乘务排班效率低下的问题,对乘务排班计划进行优化。在考虑便乘的情况下,以乘务排班计划总接续时间最小及总运营成本最小为目标建立地铁乘务排班计划编制的双目标优化模型... 乘务排班计划是城市轨道交通运营管理中的重要环节,为了解决目前乘务排班效率低下的问题,对乘务排班计划进行优化。在考虑便乘的情况下,以乘务排班计划总接续时间最小及总运营成本最小为目标建立地铁乘务排班计划编制的双目标优化模型。在满足相关约束条件的基础上,将乘务作业段按照早、白、夜班分成3组,以乘务作业段为顶点,乘务作业段之间的接续关系为弧构建早、白、夜班的网络图,并形成乘务作业段接续时间矩阵,将乘务排班转化为最短路问题。运用相关最短路算法进行求解,该算法采用动态优化逼近的方法,一条最短路径即为一个乘务任务。以成都地铁5号线为例进行乘务排班计划编制,对模型和算法进行测试。研究结果表明:在求得的乘务排班计划中,早班乘务任务个数为53个,任务时长为280 h 34 min 57 s;白班乘务任务个数为41个,任务时长为199 h 54 min 51 s;夜班乘务任务个数为49个,任务时长为215 h 25 min 37 s。总乘务任务个数为143个,总工作时长为695 h 55 min 25 s。与手工编制结果相比,降低了乘务排班计划的总成本及接续时间,提高了求解效率。 展开更多
关键词 城市交通 优化模型 SPFA算法 乘务排班计划 网络图 最短路径
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部