The aim of information hiding is to embed the secret message in a normal cover media such as image,video,voice or text,and then the secret message is transmitted through the transmission of the cover media.The secret ...The aim of information hiding is to embed the secret message in a normal cover media such as image,video,voice or text,and then the secret message is transmitted through the transmission of the cover media.The secret message should not be damaged on the process of the cover media.In order to ensure the invisibility of secret message,complex texture objects should be chosen for embedding information.In this paper,an approach which corresponds multiple steganographic algorithms to complex texture objects was presented for hiding secret message.Firstly,complex texture regions are selected based on a kind of objects detection algorithm.Secondly,three different steganographic methods were used to hide secret message into the selected block region.Experimental results show that the approach enhances the security and robustness.展开更多
Spike development directly affects the yield and quality of rice. We describe an algorithm for automatically identifying multiple developmental stages of rice spikes(AI-MDSRS) that transforms the automatic identificat...Spike development directly affects the yield and quality of rice. We describe an algorithm for automatically identifying multiple developmental stages of rice spikes(AI-MDSRS) that transforms the automatic identification of multiple developmental stages of rice spikes into the detection of rice spikes of diverse maturity levels. The scales vary greatly in different growth and development stages because rice spikes are dense and small, posing challenges for their effective and accurate detection. We describe a rice spike detection model based on an improved faster regions with convolutional neural network(Faster R-CNN).The model incorporates the following optimization strategies: first, Inception_Res Net-v2 replaces VGG16 as a feature extraction network;second, a feature pyramid network(FPN) replaces single-scale feature maps to fuse with region proposal network(RPN);third, region of interest(Ro I) alignment replaces Ro I pooling, and distance-intersection over union(DIo U) is used as a standard for non-maximum suppression(NMS). The performance of the proposed model was compared with that of the original Faster R-CNN and YOLOv4 models. The mean average precision(m AP) of the rice spike detection model was92.47%, a substantial improvement on the original Faster R-CNN model(with 40.96% m AP) and 3.4%higher than that of the YOLOv4 model, experimentally indicating that the model is more accurate and reliable. The identification results of the model for the heading–flowering, milky maturity, and full maturity stages were within two days of the results of manual observation, fully meeting the needs of agricultural activities.展开更多
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap...To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images.展开更多
基金This work is supported,in part,by the National Natural Science Foundation of China under grant numbers U1536206,U1405254,61772283,61602253,61672294,61502242in part,by the Jiangsu Basic Research Programs-Natural Science Foundation under grant numbers BK20150925 and BK20151530+1 种基金in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fundin part,by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fund,China.
文摘The aim of information hiding is to embed the secret message in a normal cover media such as image,video,voice or text,and then the secret message is transmitted through the transmission of the cover media.The secret message should not be damaged on the process of the cover media.In order to ensure the invisibility of secret message,complex texture objects should be chosen for embedding information.In this paper,an approach which corresponds multiple steganographic algorithms to complex texture objects was presented for hiding secret message.Firstly,complex texture regions are selected based on a kind of objects detection algorithm.Secondly,three different steganographic methods were used to hide secret message into the selected block region.Experimental results show that the approach enhances the security and robustness.
基金supported by the Key-Area Research and Development Program of Guangdong Province (2019B020214005)Agricultural Research Project and Agricultural Technology Promotion Project of Guangdong (2021KJ383)。
文摘Spike development directly affects the yield and quality of rice. We describe an algorithm for automatically identifying multiple developmental stages of rice spikes(AI-MDSRS) that transforms the automatic identification of multiple developmental stages of rice spikes into the detection of rice spikes of diverse maturity levels. The scales vary greatly in different growth and development stages because rice spikes are dense and small, posing challenges for their effective and accurate detection. We describe a rice spike detection model based on an improved faster regions with convolutional neural network(Faster R-CNN).The model incorporates the following optimization strategies: first, Inception_Res Net-v2 replaces VGG16 as a feature extraction network;second, a feature pyramid network(FPN) replaces single-scale feature maps to fuse with region proposal network(RPN);third, region of interest(Ro I) alignment replaces Ro I pooling, and distance-intersection over union(DIo U) is used as a standard for non-maximum suppression(NMS). The performance of the proposed model was compared with that of the original Faster R-CNN and YOLOv4 models. The mean average precision(m AP) of the rice spike detection model was92.47%, a substantial improvement on the original Faster R-CNN model(with 40.96% m AP) and 3.4%higher than that of the YOLOv4 model, experimentally indicating that the model is more accurate and reliable. The identification results of the model for the heading–flowering, milky maturity, and full maturity stages were within two days of the results of manual observation, fully meeting the needs of agricultural activities.
基金supported by the Shanghai Science and Technology Innovation Action Plan High-Tech Field Project(Grant No.22511100601)for the year 2022 and Technology Development Fund for People’s Livelihood Research(Research on Transmission Line Deep Foundation Pit Environmental Situation Awareness System Based on Multi-Source Data).
文摘To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images.