期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于FastText字向量与双向GRU循环神经网络的短文本情感分析研究——以微博评论文本为例 被引量:24
1
作者 范昊 李鹏飞 《情报科学》 CSSCI 北大核心 2021年第4期15-22,共8页
【目的/意义】提出基于字向量与双向GRU循环神经网络的模型以提高网络化短文本情感分类准确率,有助于关注民众在网络上的情绪状态,维护社会稳定,净化网络环境,提升人民幸福感。【方法/过程】通过FastText算法生成字向量与词向量,对比两... 【目的/意义】提出基于字向量与双向GRU循环神经网络的模型以提高网络化短文本情感分类准确率,有助于关注民众在网络上的情绪状态,维护社会稳定,净化网络环境,提升人民幸福感。【方法/过程】通过FastText算法生成字向量与词向量,对比两者在双向GRU的循环神经网络的训练效果,预测微博评论的情感分类。【结果/结论】研究结果表明,使用字向量训练可以降低模型过拟合的风险,本文提出的模型在准确率、精确率、召回率、F1分数四个指标上的分数都达到0.92以上,具有优秀的拟合能力和泛化能力。【创新/局限】本文根据理论为模型配置了独特的词嵌入层和循环神经网络层,模型在中文短文本二分类情感分析任务中表现优越,但在长文本或者三分类情感分析任务中的表现未知。 展开更多
关键词 短文本 情感分析 fasttext字向量 GRU 双向循环神经网络
原文传递
融合TF-IDF和LDA的中文FastText短文本分类方法 被引量:33
2
作者 冯勇 屈渤浩 +2 位作者 徐红艳 王嵘冰 张永刚 《应用科学学报》 CAS CSCD 北大核心 2019年第3期378-388,共11页
FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocatio... FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocation, LDA)的中文FastText短文本分类方法.该方法在FastText文本分类模型的输入阶段对n元语法模型处理后的词典进行TF-IDF筛选,使用LDA模型进行语料库主题分析,依据所得结果对特征词典进行补充,从而在计算输入词序列向量均值时偏向高区分度的词条,使其更适用于中文短文本分类环境.对比实验结果可知,所提方法在中文短文本分类方面具有更高的精确率. 展开更多
关键词 中文短文本分类 fasttext 词频-逆文本频率 词向量 隐含狄利克雷分布
在线阅读 下载PDF
GM-FastText多通道词向量短文本分类模型 被引量:1
3
作者 白子诚 周艳玲 张龑 《计算机系统应用》 2022年第9期403-408,共6页
在针对短文本分类中文本特征稀疏难以提取、用词不规范导致OOV (out of vocabulary)等问题,提出了基于FastText模型多通道嵌入词向量,和GRU (gate recurrent unit)与多层感知机(multi-layer perceptron, MLP)混合网络结构(GRU-MLP hybri... 在针对短文本分类中文本特征稀疏难以提取、用词不规范导致OOV (out of vocabulary)等问题,提出了基于FastText模型多通道嵌入词向量,和GRU (gate recurrent unit)与多层感知机(multi-layer perceptron, MLP)混合网络结构(GRU-MLP hybrid network architecture, GM)的短文本分类模型GM-FastText.该模型使用FastText模型以N-gram方式分别产生不同的嵌入词向量送入GRU层和MLP层获取短文本特征,通过GRU对文本的特征提取和MLP层混合提取不同通道的文本特征,最后映射到各个分类中.多组对比实验结果表明:与TextCNN、TextRNN方法对比, GM-FastText模型F1指标提升0.021和0.023,准确率提升1.96和2.08个百分点;与FastText,FastText-CNN, FastText-RNN等对比, GM-FastText模型F1指标提升0.006、0.014和0.016,准确率提升0.42、1.06和1.41个百分点.通过对比发现,在FastText多通道词向量和GM混合结构网络的作用下,多通道词向量在短文本分类中有更好的词向量表达且GM网络结构对多参数特征提取有更好的性能. 展开更多
关键词 短文本分类 快速文本 词向量 多层感知机 多特征
在线阅读 下载PDF
基于fastText的股票咨询案例中文短文本分类技术 被引量:3
4
作者 林国祥 詹先银 +4 位作者 薛醒思 林涵 吕宏昱 林培辉 方铭波 《宝鸡文理学院学报(自然科学版)》 CAS 2020年第3期48-52,共5页
目的利用词向量与文本分类模型fastText来提高股票咨询短文本的分类质量。方法首先在输入层上通过fastText将输入的词序列转化为词向量进行输入,然后在隐藏层上通过单层神经网络学习,最后在输出层上使用层次softmax对标签进行编码,计算... 目的利用词向量与文本分类模型fastText来提高股票咨询短文本的分类质量。方法首先在输入层上通过fastText将输入的词序列转化为词向量进行输入,然后在隐藏层上通过单层神经网络学习,最后在输出层上使用层次softmax对标签进行编码,计算词序列与每个标签的对应概率,输出词序列属于不同标签的概率值。结果实验结果表明,基于fastText的股票咨询案例的短文本分类准确率高于传统的基于朴素贝叶斯(Naive Bayesian)的短文本分类技术。结论将fastText用于股票咨询案例中文短文本分类可以有效地提高案例短文本分类结果的质量。 展开更多
关键词 fasttext 短文本分类 文本表示 股票咨询
在线阅读 下载PDF
基于FastText的新闻文本多分类研究 被引量:5
5
作者 张超超 卢新明 《软件导刊》 2020年第3期44-47,共4页
在迅速增加的海量数据中,文本形式的数据占很大比重。文本分类作为最常见的文本挖掘技术,可在大量杂乱的文本数据中发现有价值的信息,具有重要意义。文本分类面临的首要问题是如何在确保分类准确率的同时缩短分类时间。提出使用分类模型... 在迅速增加的海量数据中,文本形式的数据占很大比重。文本分类作为最常见的文本挖掘技术,可在大量杂乱的文本数据中发现有价值的信息,具有重要意义。文本分类面临的首要问题是如何在确保分类准确率的同时缩短分类时间。提出使用分类模型FastText学习单词特征以解决该问题,同时在数据集上使用停用词处理方法降低噪声数据对分类模型的影响。实验结果表明,使用FastText文本分类模型在数据集上准确率达到96.11%,比传统模型提高近4%,且模型处理每条文本的平均时间为1.5ms,缩短了约1/3。 展开更多
关键词 文本分类 词向量 fasttext 停用词 噪声数据
在线阅读 下载PDF
基于RNN-LSTM新冠肺炎疫情下的微博舆情分析 被引量:8
6
作者 任伟建 刘圆圆 +1 位作者 计妍 康朝海 《吉林大学学报(信息科学版)》 CAS 2022年第4期581-588,共8页
目前微博已经成为网络舆论传播和挖掘民意的重要平台,为分析疫情事件对网民情绪的影响,科学高效地做好防控宣传和舆情引导工作,为此融合不同的深度学习方法对2020年初发生的新冠疫情的微博评论进行情感分析。提出一种基于RNN(Recursive ... 目前微博已经成为网络舆论传播和挖掘民意的重要平台,为分析疫情事件对网民情绪的影响,科学高效地做好防控宣传和舆情引导工作,为此融合不同的深度学习方法对2020年初发生的新冠疫情的微博评论进行情感分析。提出一种基于RNN(Recursive Neural Network)和LSTM(Long Short-Term Memory)混合模型并在嵌入层中使用FastText词向量表示方法,以降低词向量中的噪声数据,从而获得语义丰富且噪声少的高质量词向量,并与朴素贝叶斯、支持向量机、RNN、LSTM多种情感分析方法进行比较。结果表明,所提出的情感分析模型正确率达到了98.71%,证明了该模型能有效提升情感分析正确率。 展开更多
关键词 情感分析 微博语料 fasttext词向量 长短时记忆网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部