在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素...在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素ORB特征提取方法。分析了精确特征定位的原理,对误差方程进行合理的简化并采用一种基于模板窗口距离的权函数计算方法,大幅降低了计算负担;设计了一种基于四叉树结构的特征均衡化方案,对包含特征的像平面空间进行有限次数的迭代分割,然后选取具有最优响应的特征。试验表明,本文方法进行特征提取的额外计算负担小于2.5 ms,在运行TUM和KITTI数据集时,ORB特征的量测精度分别为0.84和0.62 Pixel,达到亚像素水平,可以降低误差初值,提高光束法平差效率,并能够在满足特征总体分布规律的情况下,显著改善特征聚集的现象,有利于后续问题的稳健、准确求解。展开更多
针对基于图优化的激光SLAM算法在高相似度的场景中闭环检测出错的问题,提出使用双目相机进行闭环检测的方法.使用加入旋转不变性的FAST特征点和BRIEF描述子进行双目深度估计;引入局部地图的概念,使用单帧激光雷达数据与局部地图进行匹配...针对基于图优化的激光SLAM算法在高相似度的场景中闭环检测出错的问题,提出使用双目相机进行闭环检测的方法.使用加入旋转不变性的FAST特征点和BRIEF描述子进行双目深度估计;引入局部地图的概念,使用单帧激光雷达数据与局部地图进行匹配,提高SLAM前端的精度.使用基于词袋(bag of words,BOW)模型的k叉树字典评估图片相似度从而完成闭环检测,最后构建全局优化问题并求解.与主流开源激光雷达SLAM算法的对比实验表明,研究内容改善了只使用激光雷达数据进行闭环检测的方法在相似度较高场景下失效的问题,并且在较大面积场景运行效果明显优于基于滤波的SLAM算法.展开更多
针对大视角情况下,移动机器人3维视觉同步定位与地图构建(visual simultaneous localization and mapping,V-SLAM)性能下降的问题,提出了一种仿射不变特征匹配算法AORB(affine oriented FAST and rotated BRIEF)并在此基础上构建了基于K...针对大视角情况下,移动机器人3维视觉同步定位与地图构建(visual simultaneous localization and mapping,V-SLAM)性能下降的问题,提出了一种仿射不变特征匹配算法AORB(affine oriented FAST and rotated BRIEF)并在此基础上构建了基于Kinect的移动机器人大视角3D V-SLAM系统.首先对Kinect相机采集到的彩色RGB数据采用AORB算法实现具有大视角变化的相邻帧图像之间的快速有效匹配以建立相邻帧之间的对应关系;然后根据Kinect相机标定得到的内外参数以及对准校正后的像素点深度值将2D图像点转换为3D彩色点云数据;接着结合随机抽样一致性算法(RANdom Sample Consensus,RANSAC)去除3D点云中的外点,并利用RANSAC的内点进行最小二乘算法下机器人相邻位姿的估计;最后采用g2o(general graph optimization)优化方法对机器人位姿进行优化,从而建立3D V-SLAM模型.最终实现了移动机器人大视角3D视觉SLAM.基于标准数据集的离线实验和基于真实环境的机器人在线实验结果表明,本文所提出的匹配算法和所构建的3D V-SLAM系统在大视角情况下能完成局部模型的准确更新,成功地重构出环境模型并有效地估计出机器人的运动轨迹.展开更多
基于相机的无人驾驶汽车视觉同步定位与地图构建(SLAM),可完成无人驾驶汽车的定位与建图。针对传统ORB(Oriented FAST and Rotated BRIEF)算法在提取图像特征点时容易造成冗杂、分布集中的问题,提出一种限制四叉树算法分裂深度的改进ORB...基于相机的无人驾驶汽车视觉同步定位与地图构建(SLAM),可完成无人驾驶汽车的定位与建图。针对传统ORB(Oriented FAST and Rotated BRIEF)算法在提取图像特征点时容易造成冗杂、分布集中的问题,提出一种限制四叉树算法分裂深度的改进ORB(A-ORB)算法。该算法构造图像金字塔解决尺度不变性问题;根据所提取的特征点总数计算出每层金字塔所需要提取的特征点数;对每层金字塔图像采用自适应区域划分,根据图像信息计算特征点提取阈值;利用改进四叉树算法来均匀化分布特征点。进行了模拟实验。结果表明:相较于ORB、MA以及S-ORB算法,该算法运行效率提高了30%以上,匹配精度提高了10%以上。展开更多
针对机器人SLAM系统,在实际场景或低纹理场景中提取的有效特征点数量少,使得系统初始化效果差和定位精度不高的问题,提出了一种基于点线特征和IMU信息融合的双目惯导SLAM系统(Stereo Visual-Inertial state estimator based on optimize...针对机器人SLAM系统,在实际场景或低纹理场景中提取的有效特征点数量少,使得系统初始化效果差和定位精度不高的问题,提出了一种基于点线特征和IMU信息融合的双目惯导SLAM系统(Stereo Visual-Inertial state estimator based on optimized ORB point feature and line feature,OOL-VINS).首先,对双目视觉进行点线特征的提取与匹配,通过匹配的特征点构建残差模型,并结合松耦合算法实现系统快速且稳定的初始化.然后,利用点线特征以及三角化算法设计了一种更加鲁棒的方法来获取路标点的3D信息,以此来实现系统的位姿跟踪.最后,根据位姿跟踪过程中构建的局部三维地图,并结合滑动窗口的非线性优化对相机位姿进行更新,提高系统的定位精度.实验结果表明,OOL-VINS在TUM纹理结构类数据集上能获取更多有效的点线视觉特征,且特征提取耗时为27ms.在Eu Roc和TUM-VI数据集上进行初始化实验,实验表明,OOL-VINS初始化更加快速稳定.同样地,我们使用以上数据集进行系统性能的实验验证.结果表明,该系统的平均跟踪帧率为25Hz,在300m的低纹理场景中,定位精度可达0.072m.展开更多
为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rot...为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rotated BRIEF,ORB)来提高即时定位与地图构建(simultaneous localization and mapping,SLAM)效率,缩短特征点匹配时间,改善对外界环境的感知效果并提升船舶自身位姿估计精度。采用2020年南宁海事局执法船进港和靠泊期间由单目相机拍摄的视频数据进行实例验证。结果表明,提出的算法比传统SLAM算法的运行耗时更少,与传统定位设备输出轨迹的偏差较小,可为船舶全面立体感知海上航行环境提供研究基础。展开更多
文摘在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素ORB特征提取方法。分析了精确特征定位的原理,对误差方程进行合理的简化并采用一种基于模板窗口距离的权函数计算方法,大幅降低了计算负担;设计了一种基于四叉树结构的特征均衡化方案,对包含特征的像平面空间进行有限次数的迭代分割,然后选取具有最优响应的特征。试验表明,本文方法进行特征提取的额外计算负担小于2.5 ms,在运行TUM和KITTI数据集时,ORB特征的量测精度分别为0.84和0.62 Pixel,达到亚像素水平,可以降低误差初值,提高光束法平差效率,并能够在满足特征总体分布规律的情况下,显著改善特征聚集的现象,有利于后续问题的稳健、准确求解。
文摘针对基于图优化的激光SLAM算法在高相似度的场景中闭环检测出错的问题,提出使用双目相机进行闭环检测的方法.使用加入旋转不变性的FAST特征点和BRIEF描述子进行双目深度估计;引入局部地图的概念,使用单帧激光雷达数据与局部地图进行匹配,提高SLAM前端的精度.使用基于词袋(bag of words,BOW)模型的k叉树字典评估图片相似度从而完成闭环检测,最后构建全局优化问题并求解.与主流开源激光雷达SLAM算法的对比实验表明,研究内容改善了只使用激光雷达数据进行闭环检测的方法在相似度较高场景下失效的问题,并且在较大面积场景运行效果明显优于基于滤波的SLAM算法.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60605021)国家高技术研究发展计划(The National High Technology Research and Development Program of China under Grant No.2006AA04Z223)
文摘基于相机的无人驾驶汽车视觉同步定位与地图构建(SLAM),可完成无人驾驶汽车的定位与建图。针对传统ORB(Oriented FAST and Rotated BRIEF)算法在提取图像特征点时容易造成冗杂、分布集中的问题,提出一种限制四叉树算法分裂深度的改进ORB(A-ORB)算法。该算法构造图像金字塔解决尺度不变性问题;根据所提取的特征点总数计算出每层金字塔所需要提取的特征点数;对每层金字塔图像采用自适应区域划分,根据图像信息计算特征点提取阈值;利用改进四叉树算法来均匀化分布特征点。进行了模拟实验。结果表明:相较于ORB、MA以及S-ORB算法,该算法运行效率提高了30%以上,匹配精度提高了10%以上。
文摘针对机器人SLAM系统,在实际场景或低纹理场景中提取的有效特征点数量少,使得系统初始化效果差和定位精度不高的问题,提出了一种基于点线特征和IMU信息融合的双目惯导SLAM系统(Stereo Visual-Inertial state estimator based on optimized ORB point feature and line feature,OOL-VINS).首先,对双目视觉进行点线特征的提取与匹配,通过匹配的特征点构建残差模型,并结合松耦合算法实现系统快速且稳定的初始化.然后,利用点线特征以及三角化算法设计了一种更加鲁棒的方法来获取路标点的3D信息,以此来实现系统的位姿跟踪.最后,根据位姿跟踪过程中构建的局部三维地图,并结合滑动窗口的非线性优化对相机位姿进行更新,提高系统的定位精度.实验结果表明,OOL-VINS在TUM纹理结构类数据集上能获取更多有效的点线视觉特征,且特征提取耗时为27ms.在Eu Roc和TUM-VI数据集上进行初始化实验,实验表明,OOL-VINS初始化更加快速稳定.同样地,我们使用以上数据集进行系统性能的实验验证.结果表明,该系统的平均跟踪帧率为25Hz,在300m的低纹理场景中,定位精度可达0.072m.
文摘为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rotated BRIEF,ORB)来提高即时定位与地图构建(simultaneous localization and mapping,SLAM)效率,缩短特征点匹配时间,改善对外界环境的感知效果并提升船舶自身位姿估计精度。采用2020年南宁海事局执法船进港和靠泊期间由单目相机拍摄的视频数据进行实例验证。结果表明,提出的算法比传统SLAM算法的运行耗时更少,与传统定位设备输出轨迹的偏差较小,可为船舶全面立体感知海上航行环境提供研究基础。