Fast-charging technology is indeed a critical technical problem for electric vehicles today.Improving the conductivity of electrode materials is one of the effective ways to solve this technical bottleneck.Here,we inc...Fast-charging technology is indeed a critical technical problem for electric vehicles today.Improving the conductivity of electrode materials is one of the effective ways to solve this technical bottleneck.Here,we incorporated highly conductive MXene and carbon nanotubes into the electrode materials of Li_(4)Ti_(5)O_(12)(LTO)and LiFePO_(4)(LFP)to construct the composite electrode material 3D-LTO-CNT-MXene and 3D-LFP-CNT-MXene(named 3D-LTO and 3D-LFP).The 3D-LTO we synthesized demonstrated an impressive capacity of 146.2 mAh g^(-1)at a 20C rate(where 1C=175 mA g^(-1)),the 3D-LFP material exhibited a capacity of 104.6 mAh g^(-1)at a 20C rate(where 1C=170 mA g^(-1)).This remarkable rate capability can be attributed to the constructed three-dimensional conductive network,which facilitates enhanced electrical conductivity and electron migration rates,thereby promoting rapid charging and discharging of the batteries.Furthermore,we assembled a 3D-LTO‖3D-LFP full cell,which demonstrated exceptional performance at a high rate of 10C(1C=170 mA g^(-1)),achieving an energy density of 68.34 Wh kg^(-1)and a power density of 1547.5 W kg^(-1).This work demonstrates the feasibility of constructing 3D highly conductive electrode materials for rapid charging and discharging at high rates.It paves the way for the commercial application of truly ultra-fast charging in electric vehicles.展开更多
The electrolytes of Li-ion batteries consist mainly of a LiPF6 salt dissolved in a carbonate-based solvent mixture.Such electrolytes cannot support fast charge without detrimental impacts on performance and lifetime.F...The electrolytes of Li-ion batteries consist mainly of a LiPF6 salt dissolved in a carbonate-based solvent mixture.Such electrolytes cannot support fast charge without detrimental impacts on performance and lifetime.Fast charge aggravates parasitic reactions of the electrolyte solvents and structural degradation of the lithium layered transition metal oxide cathode materials.This leads to not only the depletion of electrolyte solvents but also the loss of cyclable Li+ions,accompanied by impedance growth and volumetric swelling of the battery.In this perspective,the design aspects of the electrolytes for fast charge of Li-ion batteries are discussed and proposed.展开更多
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol...Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.展开更多
Achieving high energy density and fast charging of lithium-ion batteries can accelerate the promotion of electric vehicles.However,the increased mass loading causes poor charge transfer,impedes the electrochemical rea...Achieving high energy density and fast charging of lithium-ion batteries can accelerate the promotion of electric vehicles.However,the increased mass loading causes poor charge transfer,impedes the electrochemical reaction kinetics,and limits the battery charging rate.Herein,this work demonstrated a novel pattern integrated stamping process for creating channels in the electrode,which benefits ion transport and increases the rate performance of the electrode.Meanwhile,the pressure applied during the stamping process improved the contact between electrode and current collector and also enhanced the mechanical stability of the electrode.Compared to the conventional bar-coated electrode with the same thickness of 155μm(delivered a discharge capacity of 16 mAh g^(−1) at the rate of 3 C),the stamped low-tortuosity LiFePO_(4) electrode delivered 101 mAh g^(−1) capacity.Additionally,water was employed as a solvent in this study.Owing to its eco-friendliness,high scalability,and minimal waste generation,this novel stamping technique inspire a new method for the industrial-level efficient roll to roll fabrication of fast-charge electrodes.展开更多
The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate elect...The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate electrolytes,cou pled with the formation of unstable solid electrolyte interphases(SEI),exacerbate the degradation of LMB performance at high current densities.Herein,we propose a versatile electrolyte design strategy that incorporates cyclohexyl methyl ether(CME)as a co-solvent to reshape the Li^(+)solvation environment by the steric-hindrance effect of bulky molecules and their competitive coordination with other solvent molecules.Simulation calculations and spectral analysis demonstrate that the addition of CME molecules reduces the involvement of other solvent molecules in the Li solvation sheath and promotes the formation of Li^(+)-PF_(6)^(-)coordination,thereby accelerating Li^(+)transport kinetics.Additionally,this electrolyte composition improves Li^(+)desolvation kinetics and fosters the formation of inorganic-rich SEI,ensuring cycle stability under fast charging.Consequently,the Li‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery with the modified electrolyte retains 82% of its initial capacity after 463 cycles at 1 C.Even under the extreme fast-charging condition of 5 C,the battery can maintain 80% capacity retention after 173 cycles.This work provides a promising approach for the development of highperformance LMBs by modulating solvation environment of electrolytes.展开更多
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d...Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.展开更多
Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience e...Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs.展开更多
Developing fast-charging lithium-ion batteries(LIBs)that feature high energy density is critical for the scalable application of electric vehicles.Iron vanadate(FVO)holds great potential as anode material in fast-char...Developing fast-charging lithium-ion batteries(LIBs)that feature high energy density is critical for the scalable application of electric vehicles.Iron vanadate(FVO)holds great potential as anode material in fast-charging LIBs because of its high theoretical specific capacity and the high natural abundance of its constituents.However,the capacity of FVO rapidly decays due to its low electrical conductivity.Herein,uniform FVO nanoparticles are grown in situ on ordered mesoporous carbon(CMK-3)support,forming a highly electrically conductive porous network,FVO/CMK-3.The structure of CMK-3 helps prevent agglomeration of FVO particles.The electrically conductive nature of CMK-3 can further enhance the electrical conductivity of FVO/CMK-3 and buffer the volume expansion of FVO particles during cycling processes.As a result,the FVO/CMK-3 displays excellent fast-charging performance of 364.6 mAh·g^(-1)capacity for 2500 cycles at 10 A·g^(-1)(with an ultralow average capacity loss per cycle of 0.003%)through a pseudocapacitive-dominant process.Moreover,the LiCoO_(2)//FVO/CMK-3 full cell achieves a high capacity of 100.2 mAh·g^(-1)and a high capacity retention(96.2%)after 200 cycles.The superior electrochemical performance demonstrates that FVO/CMK-3 is an ideal anode material candidate for fast-charging,stable LIBs with high energy density.展开更多
Carbonate electrolytes have been widely applied in sodium-ion batteries(SIBs);however,the strong Na^(+) -solvent coordination induces sluggish desolvation kinetics and severe parasitic reactions at hard carbon(HC)anod...Carbonate electrolytes have been widely applied in sodium-ion batteries(SIBs);however,the strong Na^(+) -solvent coordination induces sluggish desolvation kinetics and severe parasitic reactions at hard carbon(HC)anodes.Herein,tris(2,2,2-trifluoroethyl)phosphite(TFEPi)is introduced into a propylene carbonate/diethyl carbonate electrolyte(PDT,PC/DEC/TFEPi in a volume ratio of 5:4:1)to enhance the coordination of Na^(+)-PF_(6)^(-)for fast-charging SIBs.The electron-withdrawing CF_(3)groups in TFEPi reduce the electrondonating ability of carbonate solvents to weaken Na^(+) -solvent interactions and enrich PF_(6)^(-)in the first solvation sheath.This lowers Na^(+) desolvation energy from 68.1 kJ mol^(-1)in PC/DEC with a volume ratio of 5:5 to 54.1 kJ mol^(-1)in PDT.The anion-dominated solvation structure of PDT promotes its preferential adsorption on the HC anode,forming a NaF/Na_(3)PO_(4)-rich solid electrolyte interphase with enhanced Na^(+) transport and mechanical stability.Moreover,the phosphite group of TFEPi scavenges H/OH radicals to suppress combustion chain reactions,endowing PDT with exceptional flame retardancy with selfextinguishing time<1 s g^(-1).It is demonstrated that Na//HC half cell retains 80.6%and 61.7%of HC capacity at 200 and 500 mA g^(-1),respectively,and HC//Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)full cell shows 80%charge capacity of NVPF within 5 min at 1000 mA g^(-1)at 25℃ and maintains stable operation from -20 to 60℃.This work provides new insights into electrolyte solvation engineering for high chargeability and safety of SIBs.展开更多
Poor Li plating reversibility and high thermal runaway risks are key challenges for fast charging lithiumion batteries with graphite anodes.Herein,a dielectric and fire-resistant separator based on hybrid nanofibers o...Poor Li plating reversibility and high thermal runaway risks are key challenges for fast charging lithiumion batteries with graphite anodes.Herein,a dielectric and fire-resistant separator based on hybrid nanofibers of barium sulfate(BS)and bacterial cellulose(BC)is developed to synchronously enhance the battery's fast charging and thermal-safety performances.The regulation mechanism of the dielectric BS/BC separator in enhancing the Li^(+)ion transport and Li plating reversibility is revealed.(1)The Max-Wagner polarization electric field of the dielectric BS/BC separator can accelerate the desolvation of solvated Li^(+)ions,enhancing their transport kinetics.(2)Moreover,due to the charge balancing effect,the dielectric BS/BC separator homogenizes the electric field/Li^(+)ion flux at the graphite anode-separator interface,facilitating uniform Li plating and suppressing Li dendrite growth.Consequently,the fast-charge graphite anode with the BS/BC separator shows higher Coulombic efficiency(99.0%vs.96.9%)and longer cycling lifespan(100 cycles vs.59 cycles)than that with the polypropylene(PP)separator in the constantlithiation cycling test at 2 mA cm^(-2).The high-loading LiFePO4(15.5 mg cm^(-2))//graphite(7.5 mg cm^(-2))full cell with the BS/BC separator exhibits excellent fast charging performance,retaining 70%of its capacity after 500 cycles at a high rate of 2C,which is significantly better than that of the cell with the PP separator(retaining only 27%of its capacity after 500 cycles).More importantly,the thermally stable BS/BC separator effectively elevates the critical temperature and reduces the heat release rate during thermal runaway,thereby significantly enhancing the battery's safety.展开更多
Ni-rich cathode materials are essential for enhancing the performance of lithium-ion batteries(LIBs)in electric vehicles(EVs),particularly concerning extreme fast charging(XFC)and durability.While much of studies shin...Ni-rich cathode materials are essential for enhancing the performance of lithium-ion batteries(LIBs)in electric vehicles(EVs),particularly concerning extreme fast charging(XFC)and durability.While much of studies shine a spotlight on Li plating on the anode to improve rate capability,there is a critical lack of studies addressing the combination of kinetic improvements and mechanical strength of cathode materials under XFC conditions.In this work,Mg/Ti co-doped Ni-rich LiNi_(0.88)Co_(0.09)Mn_(0.03)O_(2)(MT-NCM)was successfully synthesized to address structural challenges associated with high-rate cycling.The results demonstrate that the stronger Ti–O bond contributes to the enhanced mechanical strength of secondary grains,which effectively alleviates microcrack formation during fast charging.Additionally,the detrimental phase transitions and internal strain as well as parasitic reactions of MT-NCM are significantly suppressed due to the synergistic effect of the dual dopants,ensuring excellent Li-ion transport kinetics compared to pristine NCM(P-NCM).Consequently,MT-NCM achieves remarkable high-rate cycling performance,retaining 88.04%of its initial capacity at 5 C and superior discharge capacity over 175 mA h g^(−1)even at 10 C.This work highlights the potential of optimizing the kinetic-mechanical properties of Ni-rich cathodes,providing a viable approach for the development of XFC LIBs with improved durability for EV applications.展开更多
Electric vehicles are pivotal in the global shift toward decarbonizing road transport,with lithium-ion batteries at the heart of this technological evolution.However,the pursuit of batteries capable of extremely fast ...Electric vehicles are pivotal in the global shift toward decarbonizing road transport,with lithium-ion batteries at the heart of this technological evolution.However,the pursuit of batteries capable of extremely fast charging that also satisfy high energy and safety criteria,poses a significant challenge to current lithium-ion batteries technologies.Additionally,the increasing demand for aluminum(Al)and copper(Cu)in electrification,solar energy technologies,and vehicle light-eighting is driving these metals toward near-critical status in the medium term.This study introduces metalized polythylene terephthalate(mPET)polymer films by depositing an Al or Cu thin layer onto two sides of a polyethylene terephthalate film—named mPET/Al and mPET/Cu,as lightweight,cost-effective alternatives to traditional metal current collectors in lithium-ion batteries.We have fabricated current collectors that significantly reduce weight(by 73%),thickness(by 33%),and cost(by 85%)compared with traditional metal foil counterparts.These advancements have the potential to enhance energy density to 280 Wh kg^(-1) at the electrode level under 10-min charging at 6 C.Through testing,including a novel extremely fast charging protocol across various C-rates and long-term cycling(up to 1000 cycles)in different cell configurations,the superior performance of these metalized polymer films has been demonstrated.Notably,mPET/Cu and mPET/Al films exhibited comparable capacities to conventional cells under extremely fast charging,with the mPET cells showing a 27%improvement in energy density at 6 C and maintaining significant energy density after 1000 cycles.This study underscores the potential of mPET films to revolutionize the roll-to-roll battery manufacturing process and significantly advance the performance metrics of lithium-ion batteries in electric vehicles applications.展开更多
Electric vehicles(EVs)operate under diverse environmental conditions and charging scenarios,leading to significant variations in charging rates and ambient temperatures.This study explores the combined impact of charg...Electric vehicles(EVs)operate under diverse environmental conditions and charging scenarios,leading to significant variations in charging rates and ambient temperatures.This study explores the combined impact of charge rate and temperature on the degradation of lithium-ion batteries utilized in EVs,specifically focusing on lithium-ion phosphate(LFP),nickel cobalt aluminum oxide(NCA),and nickel manganese cobalt(NMC)chemistries.A novel XGBoost-Random Forest(XG-RF)model is employed for state of health(SOH)estimation,analyzing battery cycle life under varying charge rates(C/20,1C,2C,and 3C)and temperatures(5℃,25℃,and 35℃)respectively.Results show that LFP batteries achieve the highest stability,with a cycle life of 5,293 cycles at 25℃ and C/20,outperforming NCA and NMC.Furthermore,the proposed XG-RF model demonstrates high prediction accuracy,achieving a minimal mean squared error of 0.0006 for LFP at 25℃ and C/20,but peaks at 0.4188 for NCA at 1C and 35℃,highlighting its sensitivity to extreme conditions.These findings highlight LFP’s superior thermal stability and emphasize the need for optimized charging and thermal management for NCA and NMC,with the hybrid model providing accurate SOH estimation to enhance EV battery reliability and lifespan.展开更多
High-nickel ternary silicon-carbon lithium-ion batteries,which use silicon-carbon materials as anodes and high-nickel ternary materials as cathodes,have already been commercialized as power batteries.The increasing de...High-nickel ternary silicon-carbon lithium-ion batteries,which use silicon-carbon materials as anodes and high-nickel ternary materials as cathodes,have already been commercialized as power batteries.The increasing demand for high-energy density and rapid charging characteristics has heightened the urgency of improving their fast charging cycle performance while establishing degradation mechanisms.Based on a pouch battery design with an energy density of 285 Wh·kg^(-1),this work studied 3 Ah pouch batteries for fast charging cycles ranging from 0.5C to 3C.Non-destructive techniques,such as differential voltage,incremental capacity analysis,and electrochemical impedance spectroscopy,were employed to investigate the effects of charging rates on battery cycling performance and to establish the degradation mechanisms.The experimental results indicated that capacity diving was observed at all charging rates.However,at lower rates(0.5C-2C),more cycles were achieved,while at higher rates(2C-3C),the cycle life remained relatively stable.Computed tomography,electrochemical performance analysis,and physicochemical characterizations were obtained,using scanning electron microscopy with energy dispersive spectroscopy,X-ray diffraction,X-ray photoelectron spectroscopy,and inductively coupled plasma optical emission spectrometry.The mechanisms of capacity decrease during 3C fast charging cycles were investigated.It is proposed that the primary causes of capacity diving during 3C fast charging are the degradation of SiOx,anode polarization,and the simultaneous dissolution of metal ions in the cathode which were deposited at the anode,resulting the continuous growth and remodeling of the SEI membrane at the anode,thereby promoting more serious side reactions.展开更多
The Wadsley-Roth phase TiNb_(2)O_(7)(TNO)has been identified as a promising anode material with potential for high safety and fast-charging lithium-ion batteries(LIBs),arising from its competitive theoretical specific...The Wadsley-Roth phase TiNb_(2)O_(7)(TNO)has been identified as a promising anode material with potential for high safety and fast-charging lithium-ion batteries(LIBs),arising from its competitive theoretical specific capacity and secure operational potential.Despite the significant advancements in specific capacity,fast charging,and longevity at the coin cell level,a comprehensive understanding and realization of the fast-charging capability and corresponding cycling stability of the TNO under practical application conditions(such as a pouch cell with an anode capacity exceeding 2 mAh cm^(-2))continues to be elusive.In this study,we explore a simple,scalable solid-phase carbon source melt strategy to fabricate the kilogram-level micrometer-scale single-crystal TNO particles enveloped by an ultrathin carbon coating layer of<5 nm(TNO@C).The in-situ X-ray diffraction(XRD)measurement of the LiCoO_(2)‖TNO@C laminated pouch cell(anode mass loading of~10 mg cm^(-2))under fast charging/discharging conditions with the combination of material characterizations and electrochemical analysis reveals a fast,yet stable crystal structure evolution for the micrometer-scale single-crystal TNO@C with only 7.03%fluctuation in unit cell volume value,which is indicative of fast reaction kinetics.The Ah-level laminated LiCoO_(2)‖TNO@C pouch cell achieved 80.8%charge within 6 min(10 C)and retained 85.3%capacity after 1000 cycles at the charging current density of 6 C(10 min),far surpassing all the results in previous publications.The straightforward synthetic approach for the micrometer-scale single-crystal TNO@C,coupled with a clear understanding of reaction kinetics and rapid crystal structure evolution,paves the way for the practical application of the micrometer-scale single-crystal TNO@C anode material for fast charging LIBs.展开更多
Sodium metal batteries(SMBs)are promising candidates for next-generation energy storage devices owing to their excellent safety performance and natural abunda nce of sodium.However,the insurmountable obstacles of dend...Sodium metal batteries(SMBs)are promising candidates for next-generation energy storage devices owing to their excellent safety performance and natural abunda nce of sodium.However,the insurmountable obstacles of dendrite formation and quick capacity decay are caused by an unstable and inhomogeneous solid electrolyte interphase that resulted from the immediate interactions between the Na metal anode and organic liquid electrolyte.Herein,a customised glass fibre separator coupled with chitosan(CS@GF)was developed to modulate the sodium ion(Na^(+))flux.The CS@GF separator facilitates the Na+homogeneous deposition on the anode side through redistribution at the chitosan polyactive sites and by inhibiting the decomposition of the electrolyte to robust solid electrolyte interphase(SEI)formation.Multiphysics simulations show that chitosan incorporated into SMBs through the separator can make the local electric field around the anode uniform,thus facilitating the transfer of cations.Na|Na symmetric cells utilising a CS@GF separator exhibited an outstanding cycle stability of over 600 h(0.5 mA cm^(-2)).Meanwhile,the Na|Na_(3)V_(5)(PO_(4))_(3)full cell exhibited excellent fast-charging performance(93.47%capacity retention after 1500 cycles at 5C).This study presents a promising strategy for inhibiting dendrite growth and realizes stable Na metal batteries,which significantly boosts the development of high-performance SMBs.展开更多
Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature(low-T).However,sluggish kinetics and aggravated dendrites present two major challenges for ano...Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature(low-T).However,sluggish kinetics and aggravated dendrites present two major challenges for anodes to achieve the goal at low-T.Herein,we propose an interlayer confined strategy for tailoring nitrogen terminals on Ti_(3)C_(2) MXene(Ti_(3)C_(2)-N_(funct)) to address these issues.The introduction of nitrogen terminals endows Ti_(3)C_(2)-N_(funct) with large interlayer space and charge redistribution,improved conductivity and sufficient adsorption sites for Na^(+),which improves the possibility of Ti_(3)C_(2) for accommodating more Na atoms,further enhancing the Na^(+) storage capability of Ti_(3)C_(2).As revealed,Ti_(3)C_(2)-N_(funct) not only possesses a lower Na-ion diffusion energy barrier and charge trans-fer activation energy,but also exhibits Na^(+)-solvent co-intercalation behavior to circumvent a high de-solvation energy barrier at low-T.Besides,the solid electrolyte interface dominated by inorganic com-pounds is more beneficial for the Na^(+)transfer at the electrode/electrolyte interface.Compared with of the unmodified sample,Ti_(3)C_(2)-Nfunct exhibits a twofold capacity(201 mAh g^(-1)),fast-charging ability(18 min at 80% capacity retention),and great superiority in cycle life(80.9%@5000 cycles)at -25℃.When coupling with Na_(3)V_(2)(PO_(4))_(2)F_(3) cathode,the Ti_(3)C_(2)-N_(funct)//NVPF exhibits high energy density and cycle stability at -25℃.展开更多
Conventional charging methods for lithium-ion battery(LIB)are challenged with vital problems at low temperatures:risk of lithium(Li)plating and low charging speed.This study proposes a fast-charging strategy without L...Conventional charging methods for lithium-ion battery(LIB)are challenged with vital problems at low temperatures:risk of lithium(Li)plating and low charging speed.This study proposes a fast-charging strategy without Li plating to achieve high-rate charging at low temperatures with bidirectional chargers.The strategy combines the pulsed-heating method and the optimal charging method via precise control of the battery states.A thermo-electric coupled model is developed based on the pseudo-twodimensional(P2D)electrochemical model to derive charging performances.Two current maps of pulsed heating and charging are generated to realize real-time control.Therefore,our proposed strategy achieves a 3 C equivalent rate at 0℃ and 1.5 C at-10℃ without Li plating,which is 10–30 times faster than the traditional methods.The entropy method is employed to balance the charging speed and the energy efficiency,and the charging performance is further enhanced.For practical application,the power limitation of the charger is considered,and a 2.4 C equivalent rate is achieved at 0℃ with a 250 kW maximum power output.This novel strategy significantly expands LIB usage boundary,and increases charging speed and battery safety.展开更多
Fast charging stations play an important role in the use of electric vehicles(EV)and significantly affect the distribution network owing to the fluctuation of their power.For exploiting the rapid adjustment feature of...Fast charging stations play an important role in the use of electric vehicles(EV)and significantly affect the distribution network owing to the fluctuation of their power.For exploiting the rapid adjustment feature of the energy-storage system(ESS),a configuration method of the ESS for EV fast charging stations is proposed in this paper,which considers the fluctuation of the wind power as well as the characteristics of the charging load.The configuration of the ESS can not only mitigate the effects of fast charging stations on the connected distribution network but also improve its economic efficiency.First,the scenario method is adopted to model the wind power in the distribution network,and according to the characteristics of the EV and the driving probability,the charging demand of each station is calculated.Then,considering factors such as the investment cost,maintenance cost,discharging benefit,and wind curtailment cost,the ESS configuration model of the distribution network is set up,which takes the optimal total costs of the ESS for EV fast charging stations within its lifecycle as an objective.Finally,General Algebraic Modelling System(GAMS)is used to linearize and solve the proposed model.A simulation on an improved IEEE-69 bus system verifies the feasibility and economic efficiency of the proposed model.展开更多
Fast-charging is considered to be a key factor in the successful expansion and use of electric vehicles.Current lithium-ion batteries(LIBs)exhibit high energy density,enabling them to be used in electric vehicles(EVs)...Fast-charging is considered to be a key factor in the successful expansion and use of electric vehicles.Current lithium-ion batteries(LIBs)exhibit high energy density,enabling them to be used in electric vehicles(EVs)over long distances,but they take too long to charge.In addition to modifying the electrode and battery structure,the composition of the electrolyte also affects the fast-charging capability of LIBs.This review provides a comprehensive and in-depth overview of the research progress,basic mechanism,scientific challenges and design strategies of the new fast-charging solution system,focusing on the influences that the compositions of liquid and solid electrolytes have on the fast-charging performance of LIBs.Finally,new insights,promising directions and potential solutions for the electrolytes of fast-charging systems are proposed to stimulate further research on revolutionary next-generation fastcharging LIB chemistry.展开更多
基金supported by Xinjiang Uygur Autonomous Region Graduate Research Innovation Project (No.XJ2024G195)Xinjiang Key Research and Development Project (No.2021B01001-1)+2 种基金the National Natural Science Foundation of China (No.22169020)the Natural Science Foundation of University in Jiangsu province (No.22KJB150003)the National Natural Science Foundation of China (No.22309068)
文摘Fast-charging technology is indeed a critical technical problem for electric vehicles today.Improving the conductivity of electrode materials is one of the effective ways to solve this technical bottleneck.Here,we incorporated highly conductive MXene and carbon nanotubes into the electrode materials of Li_(4)Ti_(5)O_(12)(LTO)and LiFePO_(4)(LFP)to construct the composite electrode material 3D-LTO-CNT-MXene and 3D-LFP-CNT-MXene(named 3D-LTO and 3D-LFP).The 3D-LTO we synthesized demonstrated an impressive capacity of 146.2 mAh g^(-1)at a 20C rate(where 1C=175 mA g^(-1)),the 3D-LFP material exhibited a capacity of 104.6 mAh g^(-1)at a 20C rate(where 1C=170 mA g^(-1)).This remarkable rate capability can be attributed to the constructed three-dimensional conductive network,which facilitates enhanced electrical conductivity and electron migration rates,thereby promoting rapid charging and discharging of the batteries.Furthermore,we assembled a 3D-LTO‖3D-LFP full cell,which demonstrated exceptional performance at a high rate of 10C(1C=170 mA g^(-1)),achieving an energy density of 68.34 Wh kg^(-1)and a power density of 1547.5 W kg^(-1).This work demonstrates the feasibility of constructing 3D highly conductive electrode materials for rapid charging and discharging at high rates.It paves the way for the commercial application of truly ultra-fast charging in electric vehicles.
基金Army Research Laboratory,Grant/Award Number:N/A。
文摘The electrolytes of Li-ion batteries consist mainly of a LiPF6 salt dissolved in a carbonate-based solvent mixture.Such electrolytes cannot support fast charge without detrimental impacts on performance and lifetime.Fast charge aggravates parasitic reactions of the electrolyte solvents and structural degradation of the lithium layered transition metal oxide cathode materials.This leads to not only the depletion of electrolyte solvents but also the loss of cyclable Li+ions,accompanied by impedance growth and volumetric swelling of the battery.In this perspective,the design aspects of the electrolytes for fast charge of Li-ion batteries are discussed and proposed.
基金UK Engineering and Physical Sciences Research Council(EPSRC)New Investigator Award(2018,EP/R043272/1)Newton Advanced Fellowship(192097)for financial support+3 种基金the Royal Society,the Engineering and Physical Sciences Research Council(EPSRC,EP/R023980/1,EP/V027131/1)the European Research Council(ERC)under the European Union's Horizon 2020 research and innovation program(HYPERION,Grant Agreement Number 756962)the Royal Society and Tata Group(UF150033)EPSRC SPECIFIC IKC(EP/N020863/1)
文摘Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.
文摘Achieving high energy density and fast charging of lithium-ion batteries can accelerate the promotion of electric vehicles.However,the increased mass loading causes poor charge transfer,impedes the electrochemical reaction kinetics,and limits the battery charging rate.Herein,this work demonstrated a novel pattern integrated stamping process for creating channels in the electrode,which benefits ion transport and increases the rate performance of the electrode.Meanwhile,the pressure applied during the stamping process improved the contact between electrode and current collector and also enhanced the mechanical stability of the electrode.Compared to the conventional bar-coated electrode with the same thickness of 155μm(delivered a discharge capacity of 16 mAh g^(−1) at the rate of 3 C),the stamped low-tortuosity LiFePO_(4) electrode delivered 101 mAh g^(−1) capacity.Additionally,water was employed as a solvent in this study.Owing to its eco-friendliness,high scalability,and minimal waste generation,this novel stamping technique inspire a new method for the industrial-level efficient roll to roll fabrication of fast-charge electrodes.
基金supported by the Lithium Resources and Lithium Materials Key Laboratory of Sichuan Province(LRMKF202405)the National Natural Science Foundation of China(52402226)+3 种基金the Natural Science Foundation of Sichuan Province(2024NSFSC1016)the Scientific Research Startup Foundation of Chengdu University of Technology(10912-KYQD2023-10240)the opening funding from Key Laboratory of Engineering Dielectrics and Its Application(Harbin University of Science and Technology)(KFM202507,Ministry of Education)the funding provided by the Alexander von Humboldt Foundation。
文摘The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate electrolytes,cou pled with the formation of unstable solid electrolyte interphases(SEI),exacerbate the degradation of LMB performance at high current densities.Herein,we propose a versatile electrolyte design strategy that incorporates cyclohexyl methyl ether(CME)as a co-solvent to reshape the Li^(+)solvation environment by the steric-hindrance effect of bulky molecules and their competitive coordination with other solvent molecules.Simulation calculations and spectral analysis demonstrate that the addition of CME molecules reduces the involvement of other solvent molecules in the Li solvation sheath and promotes the formation of Li^(+)-PF_(6)^(-)coordination,thereby accelerating Li^(+)transport kinetics.Additionally,this electrolyte composition improves Li^(+)desolvation kinetics and fosters the formation of inorganic-rich SEI,ensuring cycle stability under fast charging.Consequently,the Li‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery with the modified electrolyte retains 82% of its initial capacity after 463 cycles at 1 C.Even under the extreme fast-charging condition of 5 C,the battery can maintain 80% capacity retention after 173 cycles.This work provides a promising approach for the development of highperformance LMBs by modulating solvation environment of electrolytes.
基金financially supported by the National Natural Science Foundation of China(Nos.U1904173 and 52272219)the Key Research Projects of Henan Provincial Department of Education(No.19A150043)+2 种基金the Natural Science Foundation of Henan Province(Nos.202300410330 and 222300420276)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Xinyang Normal University Analysis&Testing Center。
文摘Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.
文摘Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs.
基金supported by the National Natural Science Foundation of China(No.52002170)the Central Guidance Fund Project for Local Scientific and Technological Development in Qinghai Province(No.2024ZY013)+1 种基金the Foundation of Key Laboratory of Flexible Electronics of Zhejiang Province(No.2023FE011)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_1635).
文摘Developing fast-charging lithium-ion batteries(LIBs)that feature high energy density is critical for the scalable application of electric vehicles.Iron vanadate(FVO)holds great potential as anode material in fast-charging LIBs because of its high theoretical specific capacity and the high natural abundance of its constituents.However,the capacity of FVO rapidly decays due to its low electrical conductivity.Herein,uniform FVO nanoparticles are grown in situ on ordered mesoporous carbon(CMK-3)support,forming a highly electrically conductive porous network,FVO/CMK-3.The structure of CMK-3 helps prevent agglomeration of FVO particles.The electrically conductive nature of CMK-3 can further enhance the electrical conductivity of FVO/CMK-3 and buffer the volume expansion of FVO particles during cycling processes.As a result,the FVO/CMK-3 displays excellent fast-charging performance of 364.6 mAh·g^(-1)capacity for 2500 cycles at 10 A·g^(-1)(with an ultralow average capacity loss per cycle of 0.003%)through a pseudocapacitive-dominant process.Moreover,the LiCoO_(2)//FVO/CMK-3 full cell achieves a high capacity of 100.2 mAh·g^(-1)and a high capacity retention(96.2%)after 200 cycles.The superior electrochemical performance demonstrates that FVO/CMK-3 is an ideal anode material candidate for fast-charging,stable LIBs with high energy density.
基金supported by the National Natural Science Foundation of China(W2412060 and 22325902)the Natural Science Foundation of Tianjin City(24ZXZSSS00310 and 24JCZXJC00170)the NCC Fund(NCC2022FH03)。
文摘Carbonate electrolytes have been widely applied in sodium-ion batteries(SIBs);however,the strong Na^(+) -solvent coordination induces sluggish desolvation kinetics and severe parasitic reactions at hard carbon(HC)anodes.Herein,tris(2,2,2-trifluoroethyl)phosphite(TFEPi)is introduced into a propylene carbonate/diethyl carbonate electrolyte(PDT,PC/DEC/TFEPi in a volume ratio of 5:4:1)to enhance the coordination of Na^(+)-PF_(6)^(-)for fast-charging SIBs.The electron-withdrawing CF_(3)groups in TFEPi reduce the electrondonating ability of carbonate solvents to weaken Na^(+) -solvent interactions and enrich PF_(6)^(-)in the first solvation sheath.This lowers Na^(+) desolvation energy from 68.1 kJ mol^(-1)in PC/DEC with a volume ratio of 5:5 to 54.1 kJ mol^(-1)in PDT.The anion-dominated solvation structure of PDT promotes its preferential adsorption on the HC anode,forming a NaF/Na_(3)PO_(4)-rich solid electrolyte interphase with enhanced Na^(+) transport and mechanical stability.Moreover,the phosphite group of TFEPi scavenges H/OH radicals to suppress combustion chain reactions,endowing PDT with exceptional flame retardancy with selfextinguishing time<1 s g^(-1).It is demonstrated that Na//HC half cell retains 80.6%and 61.7%of HC capacity at 200 and 500 mA g^(-1),respectively,and HC//Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)full cell shows 80%charge capacity of NVPF within 5 min at 1000 mA g^(-1)at 25℃ and maintains stable operation from -20 to 60℃.This work provides new insights into electrolyte solvation engineering for high chargeability and safety of SIBs.
基金financially supported by the National Natural Science Foundation of China(Grant No.52202328,52372099)the Shanghai Sailing Program(22YF1455500).
文摘Poor Li plating reversibility and high thermal runaway risks are key challenges for fast charging lithiumion batteries with graphite anodes.Herein,a dielectric and fire-resistant separator based on hybrid nanofibers of barium sulfate(BS)and bacterial cellulose(BC)is developed to synchronously enhance the battery's fast charging and thermal-safety performances.The regulation mechanism of the dielectric BS/BC separator in enhancing the Li^(+)ion transport and Li plating reversibility is revealed.(1)The Max-Wagner polarization electric field of the dielectric BS/BC separator can accelerate the desolvation of solvated Li^(+)ions,enhancing their transport kinetics.(2)Moreover,due to the charge balancing effect,the dielectric BS/BC separator homogenizes the electric field/Li^(+)ion flux at the graphite anode-separator interface,facilitating uniform Li plating and suppressing Li dendrite growth.Consequently,the fast-charge graphite anode with the BS/BC separator shows higher Coulombic efficiency(99.0%vs.96.9%)and longer cycling lifespan(100 cycles vs.59 cycles)than that with the polypropylene(PP)separator in the constantlithiation cycling test at 2 mA cm^(-2).The high-loading LiFePO4(15.5 mg cm^(-2))//graphite(7.5 mg cm^(-2))full cell with the BS/BC separator exhibits excellent fast charging performance,retaining 70%of its capacity after 500 cycles at a high rate of 2C,which is significantly better than that of the cell with the PP separator(retaining only 27%of its capacity after 500 cycles).More importantly,the thermally stable BS/BC separator effectively elevates the critical temperature and reduces the heat release rate during thermal runaway,thereby significantly enhancing the battery's safety.
基金supported by the Shenzhen Science and Technology Program(SGDX20230821100459001)the YCRG-CRF(C1002-24Y)the GRF Project(CityU 11220322,CityU 7006015),the City University of Hong Kong,Shenzhen Research Institute。
文摘Ni-rich cathode materials are essential for enhancing the performance of lithium-ion batteries(LIBs)in electric vehicles(EVs),particularly concerning extreme fast charging(XFC)and durability.While much of studies shine a spotlight on Li plating on the anode to improve rate capability,there is a critical lack of studies addressing the combination of kinetic improvements and mechanical strength of cathode materials under XFC conditions.In this work,Mg/Ti co-doped Ni-rich LiNi_(0.88)Co_(0.09)Mn_(0.03)O_(2)(MT-NCM)was successfully synthesized to address structural challenges associated with high-rate cycling.The results demonstrate that the stronger Ti–O bond contributes to the enhanced mechanical strength of secondary grains,which effectively alleviates microcrack formation during fast charging.Additionally,the detrimental phase transitions and internal strain as well as parasitic reactions of MT-NCM are significantly suppressed due to the synergistic effect of the dual dopants,ensuring excellent Li-ion transport kinetics compared to pristine NCM(P-NCM).Consequently,MT-NCM achieves remarkable high-rate cycling performance,retaining 88.04%of its initial capacity at 5 C and superior discharge capacity over 175 mA h g^(−1)even at 10 C.This work highlights the potential of optimizing the kinetic-mechanical properties of Ni-rich cathodes,providing a viable approach for the development of XFC LIBs with improved durability for EV applications.
文摘Electric vehicles are pivotal in the global shift toward decarbonizing road transport,with lithium-ion batteries at the heart of this technological evolution.However,the pursuit of batteries capable of extremely fast charging that also satisfy high energy and safety criteria,poses a significant challenge to current lithium-ion batteries technologies.Additionally,the increasing demand for aluminum(Al)and copper(Cu)in electrification,solar energy technologies,and vehicle light-eighting is driving these metals toward near-critical status in the medium term.This study introduces metalized polythylene terephthalate(mPET)polymer films by depositing an Al or Cu thin layer onto two sides of a polyethylene terephthalate film—named mPET/Al and mPET/Cu,as lightweight,cost-effective alternatives to traditional metal current collectors in lithium-ion batteries.We have fabricated current collectors that significantly reduce weight(by 73%),thickness(by 33%),and cost(by 85%)compared with traditional metal foil counterparts.These advancements have the potential to enhance energy density to 280 Wh kg^(-1) at the electrode level under 10-min charging at 6 C.Through testing,including a novel extremely fast charging protocol across various C-rates and long-term cycling(up to 1000 cycles)in different cell configurations,the superior performance of these metalized polymer films has been demonstrated.Notably,mPET/Cu and mPET/Al films exhibited comparable capacities to conventional cells under extremely fast charging,with the mPET cells showing a 27%improvement in energy density at 6 C and maintaining significant energy density after 1000 cycles.This study underscores the potential of mPET films to revolutionize the roll-to-roll battery manufacturing process and significantly advance the performance metrics of lithium-ion batteries in electric vehicles applications.
文摘Electric vehicles(EVs)operate under diverse environmental conditions and charging scenarios,leading to significant variations in charging rates and ambient temperatures.This study explores the combined impact of charge rate and temperature on the degradation of lithium-ion batteries utilized in EVs,specifically focusing on lithium-ion phosphate(LFP),nickel cobalt aluminum oxide(NCA),and nickel manganese cobalt(NMC)chemistries.A novel XGBoost-Random Forest(XG-RF)model is employed for state of health(SOH)estimation,analyzing battery cycle life under varying charge rates(C/20,1C,2C,and 3C)and temperatures(5℃,25℃,and 35℃)respectively.Results show that LFP batteries achieve the highest stability,with a cycle life of 5,293 cycles at 25℃ and C/20,outperforming NCA and NMC.Furthermore,the proposed XG-RF model demonstrates high prediction accuracy,achieving a minimal mean squared error of 0.0006 for LFP at 25℃ and C/20,but peaks at 0.4188 for NCA at 1C and 35℃,highlighting its sensitivity to extreme conditions.These findings highlight LFP’s superior thermal stability and emphasize the need for optimized charging and thermal management for NCA and NMC,with the hybrid model providing accurate SOH estimation to enhance EV battery reliability and lifespan.
基金supported by the New Energy Vehicle Power Battery Life Cycle Testing and Verification Public Service Platform Project(No.2022-235-224).
文摘High-nickel ternary silicon-carbon lithium-ion batteries,which use silicon-carbon materials as anodes and high-nickel ternary materials as cathodes,have already been commercialized as power batteries.The increasing demand for high-energy density and rapid charging characteristics has heightened the urgency of improving their fast charging cycle performance while establishing degradation mechanisms.Based on a pouch battery design with an energy density of 285 Wh·kg^(-1),this work studied 3 Ah pouch batteries for fast charging cycles ranging from 0.5C to 3C.Non-destructive techniques,such as differential voltage,incremental capacity analysis,and electrochemical impedance spectroscopy,were employed to investigate the effects of charging rates on battery cycling performance and to establish the degradation mechanisms.The experimental results indicated that capacity diving was observed at all charging rates.However,at lower rates(0.5C-2C),more cycles were achieved,while at higher rates(2C-3C),the cycle life remained relatively stable.Computed tomography,electrochemical performance analysis,and physicochemical characterizations were obtained,using scanning electron microscopy with energy dispersive spectroscopy,X-ray diffraction,X-ray photoelectron spectroscopy,and inductively coupled plasma optical emission spectrometry.The mechanisms of capacity decrease during 3C fast charging cycles were investigated.It is proposed that the primary causes of capacity diving during 3C fast charging are the degradation of SiOx,anode polarization,and the simultaneous dissolution of metal ions in the cathode which were deposited at the anode,resulting the continuous growth and remodeling of the SEI membrane at the anode,thereby promoting more serious side reactions.
基金support of the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20240240)the China Postdoctoral Science Foundation(No.2024M751001)。
文摘The Wadsley-Roth phase TiNb_(2)O_(7)(TNO)has been identified as a promising anode material with potential for high safety and fast-charging lithium-ion batteries(LIBs),arising from its competitive theoretical specific capacity and secure operational potential.Despite the significant advancements in specific capacity,fast charging,and longevity at the coin cell level,a comprehensive understanding and realization of the fast-charging capability and corresponding cycling stability of the TNO under practical application conditions(such as a pouch cell with an anode capacity exceeding 2 mAh cm^(-2))continues to be elusive.In this study,we explore a simple,scalable solid-phase carbon source melt strategy to fabricate the kilogram-level micrometer-scale single-crystal TNO particles enveloped by an ultrathin carbon coating layer of<5 nm(TNO@C).The in-situ X-ray diffraction(XRD)measurement of the LiCoO_(2)‖TNO@C laminated pouch cell(anode mass loading of~10 mg cm^(-2))under fast charging/discharging conditions with the combination of material characterizations and electrochemical analysis reveals a fast,yet stable crystal structure evolution for the micrometer-scale single-crystal TNO@C with only 7.03%fluctuation in unit cell volume value,which is indicative of fast reaction kinetics.The Ah-level laminated LiCoO_(2)‖TNO@C pouch cell achieved 80.8%charge within 6 min(10 C)and retained 85.3%capacity after 1000 cycles at the charging current density of 6 C(10 min),far surpassing all the results in previous publications.The straightforward synthetic approach for the micrometer-scale single-crystal TNO@C,coupled with a clear understanding of reaction kinetics and rapid crystal structure evolution,paves the way for the practical application of the micrometer-scale single-crystal TNO@C anode material for fast charging LIBs.
基金funded by the Key Research and Development Program of Shandong Province(2023CXPT069)Opening Funds of the State Key Laboratory of Building Safety and Built Environment(BSBE2022-EET-06)Innovation Project of Guangwei Group Academician Workstation(GWYS-2022-04)。
文摘Sodium metal batteries(SMBs)are promising candidates for next-generation energy storage devices owing to their excellent safety performance and natural abunda nce of sodium.However,the insurmountable obstacles of dendrite formation and quick capacity decay are caused by an unstable and inhomogeneous solid electrolyte interphase that resulted from the immediate interactions between the Na metal anode and organic liquid electrolyte.Herein,a customised glass fibre separator coupled with chitosan(CS@GF)was developed to modulate the sodium ion(Na^(+))flux.The CS@GF separator facilitates the Na+homogeneous deposition on the anode side through redistribution at the chitosan polyactive sites and by inhibiting the decomposition of the electrolyte to robust solid electrolyte interphase(SEI)formation.Multiphysics simulations show that chitosan incorporated into SMBs through the separator can make the local electric field around the anode uniform,thus facilitating the transfer of cations.Na|Na symmetric cells utilising a CS@GF separator exhibited an outstanding cycle stability of over 600 h(0.5 mA cm^(-2)).Meanwhile,the Na|Na_(3)V_(5)(PO_(4))_(3)full cell exhibited excellent fast-charging performance(93.47%capacity retention after 1500 cycles at 5C).This study presents a promising strategy for inhibiting dendrite growth and realizes stable Na metal batteries,which significantly boosts the development of high-performance SMBs.
基金the National Natural Sci-ence Foundation of China(Grant Nos.21673064,51902072 and 22109033)Heilongjiang Touyan Team(Grant No.HITTY-20190033)+1 种基金Fundamental Research Funds for the Central Universities(Grant Nos.HIT.NSRIF.2019040 and 2019041)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(Grant No.2020 DX11).
文摘Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature(low-T).However,sluggish kinetics and aggravated dendrites present two major challenges for anodes to achieve the goal at low-T.Herein,we propose an interlayer confined strategy for tailoring nitrogen terminals on Ti_(3)C_(2) MXene(Ti_(3)C_(2)-N_(funct)) to address these issues.The introduction of nitrogen terminals endows Ti_(3)C_(2)-N_(funct) with large interlayer space and charge redistribution,improved conductivity and sufficient adsorption sites for Na^(+),which improves the possibility of Ti_(3)C_(2) for accommodating more Na atoms,further enhancing the Na^(+) storage capability of Ti_(3)C_(2).As revealed,Ti_(3)C_(2)-N_(funct) not only possesses a lower Na-ion diffusion energy barrier and charge trans-fer activation energy,but also exhibits Na^(+)-solvent co-intercalation behavior to circumvent a high de-solvation energy barrier at low-T.Besides,the solid electrolyte interface dominated by inorganic com-pounds is more beneficial for the Na^(+)transfer at the electrode/electrolyte interface.Compared with of the unmodified sample,Ti_(3)C_(2)-Nfunct exhibits a twofold capacity(201 mAh g^(-1)),fast-charging ability(18 min at 80% capacity retention),and great superiority in cycle life(80.9%@5000 cycles)at -25℃.When coupling with Na_(3)V_(2)(PO_(4))_(2)F_(3) cathode,the Ti_(3)C_(2)-N_(funct)//NVPF exhibits high energy density and cycle stability at -25℃.
基金supported by the National Natural Science Foundation of China(52177217 and 52037006)the Beijing Natural Science Foundation(3212031)。
文摘Conventional charging methods for lithium-ion battery(LIB)are challenged with vital problems at low temperatures:risk of lithium(Li)plating and low charging speed.This study proposes a fast-charging strategy without Li plating to achieve high-rate charging at low temperatures with bidirectional chargers.The strategy combines the pulsed-heating method and the optimal charging method via precise control of the battery states.A thermo-electric coupled model is developed based on the pseudo-twodimensional(P2D)electrochemical model to derive charging performances.Two current maps of pulsed heating and charging are generated to realize real-time control.Therefore,our proposed strategy achieves a 3 C equivalent rate at 0℃ and 1.5 C at-10℃ without Li plating,which is 10–30 times faster than the traditional methods.The entropy method is employed to balance the charging speed and the energy efficiency,and the charging performance is further enhanced.For practical application,the power limitation of the charger is considered,and a 2.4 C equivalent rate is achieved at 0℃ with a 250 kW maximum power output.This novel strategy significantly expands LIB usage boundary,and increases charging speed and battery safety.
文摘Fast charging stations play an important role in the use of electric vehicles(EV)and significantly affect the distribution network owing to the fluctuation of their power.For exploiting the rapid adjustment feature of the energy-storage system(ESS),a configuration method of the ESS for EV fast charging stations is proposed in this paper,which considers the fluctuation of the wind power as well as the characteristics of the charging load.The configuration of the ESS can not only mitigate the effects of fast charging stations on the connected distribution network but also improve its economic efficiency.First,the scenario method is adopted to model the wind power in the distribution network,and according to the characteristics of the EV and the driving probability,the charging demand of each station is calculated.Then,considering factors such as the investment cost,maintenance cost,discharging benefit,and wind curtailment cost,the ESS configuration model of the distribution network is set up,which takes the optimal total costs of the ESS for EV fast charging stations within its lifecycle as an objective.Finally,General Algebraic Modelling System(GAMS)is used to linearize and solve the proposed model.A simulation on an improved IEEE-69 bus system verifies the feasibility and economic efficiency of the proposed model.
基金supported by the National Natural Science Foundation of China(No.62101296)the Natural Science Foundation of Shaanxi Province(Nos.2021JQ-760 and 2021JQ-756)+1 种基金the Shaanxi Province University Student Innovation and Entrepreneurship Training Program Project(No.S202110720084)the School-level project of Shaanxi university of Technology(No.SLGRC02)。
文摘Fast-charging is considered to be a key factor in the successful expansion and use of electric vehicles.Current lithium-ion batteries(LIBs)exhibit high energy density,enabling them to be used in electric vehicles(EVs)over long distances,but they take too long to charge.In addition to modifying the electrode and battery structure,the composition of the electrolyte also affects the fast-charging capability of LIBs.This review provides a comprehensive and in-depth overview of the research progress,basic mechanism,scientific challenges and design strategies of the new fast-charging solution system,focusing on the influences that the compositions of liquid and solid electrolytes have on the fast-charging performance of LIBs.Finally,new insights,promising directions and potential solutions for the electrolytes of fast-charging systems are proposed to stimulate further research on revolutionary next-generation fastcharging LIB chemistry.