Self-powered sensing technologies are increasingly sought for intelligent and autonomous marine environmental monitoring.A Faraday cage-enabled triboelectric nanogenerator(FC-TENG)is developed by incorporating a FeCoC...Self-powered sensing technologies are increasingly sought for intelligent and autonomous marine environmental monitoring.A Faraday cage-enabled triboelectric nanogenerator(FC-TENG)is developed by incorporating a FeCoCrNiAl alloy powder layer,enabling efficient harvesting of low-frequency mechanical energy.The quasi-enclosed conductive architecture mimics a Faraday cage,effectively confining electrostatic charges and suppressing edge-induced dissipation,thereby enhancing charge retention.Compared to single-metal triboelectric layers,the FC-TENG exhibits 4.86-,3.57-,and 2.76-fold increases in open-circuit voltage(VOC,1276.27 V),short-circuit current(ISC,63.69μA),and transferred charge(QSC,29.55 nC),respectively.Its hydrophobic surface further ensures environmental robustness and stable output under humid conditions.With an optimized load resistance of 60 MΩ,the FC-TENG device achieves a peak power of~4.08 mW and reliably powers LED arrays and environmental sensors,while enabling efficient energy storage across a wide frequency range.Furthermore,a wave-driven FC-TENG system integrated with wireless communication and visual feedback modules enables real-time marine motion monitoring without external power.This work introduces the Faraday cage-inspired triboelectric device based on microspherical alloy powder,offering enhanced charge retention,humidity tolerance,and dual-mode functionality in power generation and marine wave sensing.The proposed strategy provides a robust and scalable architecture for future self-powered systems operating in harsh environments.展开更多
针对35 kHz超声激励薄液膜形成的Faraday波,采用实验和有限元仿真,对Faraday波的形成机理进行探究。建立超声激励下的两相流计算模型,采用计算流体力学(CFD)方法对Faraday波的形成过程进行有限元仿真,通过分析相图和流线图,探讨Faraday...针对35 kHz超声激励薄液膜形成的Faraday波,采用实验和有限元仿真,对Faraday波的形成机理进行探究。建立超声激励下的两相流计算模型,采用计算流体力学(CFD)方法对Faraday波的形成过程进行有限元仿真,通过分析相图和流线图,探讨Faraday波的形成机理,得到Faraday波的振动频率约为超声激励频率的1/2。液体惯性的存在,导致超声激励与液体表面波存在不断变化的相位差,相位差变化周期约等于2个超声激励周期。通过35 k Hz超声激励薄液膜实验,在薄液膜表面观察到排列整齐的Faraday波图案,通过测量Faraday波的波长,得出实验获得的Faraday波频率约为超声激励频率的1/2,与有限元仿真结果一致。展开更多
基金supported by the Opening Fund of State Key Laboratory of Fire Science(SKLFS)under Grant No.HZ2024-KF04the Open Project Program of Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems(No.2024SZKF01)the New Chongqing Youth Innovation Talent Project(CSTB2024NSCQ-QCXMX0072).
文摘Self-powered sensing technologies are increasingly sought for intelligent and autonomous marine environmental monitoring.A Faraday cage-enabled triboelectric nanogenerator(FC-TENG)is developed by incorporating a FeCoCrNiAl alloy powder layer,enabling efficient harvesting of low-frequency mechanical energy.The quasi-enclosed conductive architecture mimics a Faraday cage,effectively confining electrostatic charges and suppressing edge-induced dissipation,thereby enhancing charge retention.Compared to single-metal triboelectric layers,the FC-TENG exhibits 4.86-,3.57-,and 2.76-fold increases in open-circuit voltage(VOC,1276.27 V),short-circuit current(ISC,63.69μA),and transferred charge(QSC,29.55 nC),respectively.Its hydrophobic surface further ensures environmental robustness and stable output under humid conditions.With an optimized load resistance of 60 MΩ,the FC-TENG device achieves a peak power of~4.08 mW and reliably powers LED arrays and environmental sensors,while enabling efficient energy storage across a wide frequency range.Furthermore,a wave-driven FC-TENG system integrated with wireless communication and visual feedback modules enables real-time marine motion monitoring without external power.This work introduces the Faraday cage-inspired triboelectric device based on microspherical alloy powder,offering enhanced charge retention,humidity tolerance,and dual-mode functionality in power generation and marine wave sensing.The proposed strategy provides a robust and scalable architecture for future self-powered systems operating in harsh environments.
文摘针对35 kHz超声激励薄液膜形成的Faraday波,采用实验和有限元仿真,对Faraday波的形成机理进行探究。建立超声激励下的两相流计算模型,采用计算流体力学(CFD)方法对Faraday波的形成过程进行有限元仿真,通过分析相图和流线图,探讨Faraday波的形成机理,得到Faraday波的振动频率约为超声激励频率的1/2。液体惯性的存在,导致超声激励与液体表面波存在不断变化的相位差,相位差变化周期约等于2个超声激励周期。通过35 k Hz超声激励薄液膜实验,在薄液膜表面观察到排列整齐的Faraday波图案,通过测量Faraday波的波长,得出实验获得的Faraday波频率约为超声激励频率的1/2,与有限元仿真结果一致。