Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additio...Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additional energy storing capability via electrochemical faradaic contribution on electrodes for high-performance flexible ESSs.Particularly,determining effective material combinations between electrodes and RMs is essential for maximizing surface faradaic redox reactions for energy-storage performance.In this study,an electrode-RM system comprising heterostructured hybrid(carbon fiber(CF)/MnO_(2)) faradaic electrodes and iodine RMs(I-RMs) in a redox-active electrolyte is investigated.The CF/MnO_(2)with the 1-RMs(CF/MnO_(2)-I) induces dominant catalytic faradaic interaction with the I-RMs,significantly enhancing the surface faradaic kinetics and increasing the overall energy-storage performance.The CF/MnO_(2)-I ESSs show a 12.6-fold(or higher) increased volumetric energy density of 793.81 mWh L^(-1)at a current of 10 μA relative to ESSs using CF/MnO_(2)without I-RMs(CF/MnO_(2)).Moreover,the CF/MnO_(2)-I retains 93.1% of its initial capacitance after 10,000 cycles,validating the excellent cyclability.Finally,the flexibility of the ESSs is tested at different bending angles(180° to 0°),demonstrating its feasibility for flexible and high-wear environments.Therefore,CF/MnO_(2)electrodes present a practical material combination for high-performance flexible energy-storage devices owing to the catalytic faradaic interaction with I-RMs.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
The electrochemical reduction of carbon dioxide(CO_(2))into value-added chemicals and fuels has been extensively studied as a promising strategy for mitigating environmental issues and achieving sustainable energy con...The electrochemical reduction of carbon dioxide(CO_(2))into value-added chemicals and fuels has been extensively studied as a promising strategy for mitigating environmental issues and achieving sustainable energy conversion.Substantial efforts have been made to improve the understanding of CO_(2)reduction reaction(CO_(2)RR)mechanisms by computational and spectroscopic studies.An in-depth understanding of CO_(2)RR mechanism can provide the guidance and criteria for designing high-efficiency catalysts,and hence,steering CO_(2)RR to desired products.This review systematically discusses the formation mechanisms and reaction pathways of various CO_(2)RR products,including C_(1)products(CO,HCOOH,and CH_(4)),C_(2)products(C_(2)H_(4),C_(2)H_(5)OH,and CH_(3)COOH),and C_(3+)products(C_(3)H_(6),C_(3)H_(7)OH,and others).The reaction pathways are elucidated by analyzing the adsorption behavior,energy barriers,and intermediate coupling steps involved in the generation of each product.Particular emphasis is placed on the key intermediates,such as^(*)OCHO,^(*)COOH,^(*)CO,^(*)OCCOH,and^(*)CCO,which play crucial roles in determining the product selectivity.The effects of catalyst composition,morphology,and electronic structure on the adsorption and activation of these intermediates are also discussed.Moreover,advanced characterization techniques,including in-situ spectroscopy and isotopic labeling experiments,are highlighted for their contributions to unraveling the reaction mechanisms.The review aims to provide critical insights to reveal the activity-determining para meters and underlying CO_(2)RR mechanisms,which will guide the rational design of next-generation electrocatalysts for selective CO^(2)RR towards high-value products.展开更多
Drinking water contamination by heavy metals,particularly chromium and arsenic oxyanions,is a severe challenge threatening humanity’s sustainable development.Electrochemically mediated water purification is gaining a...Drinking water contamination by heavy metals,particularly chromium and arsenic oxyanions,is a severe challenge threatening humanity’s sustainable development.Electrochemically mediated water purification is gaining attention due to its high uptake,rapid kinetics,modularity,and facile regeneration.Here,we designed a composite electrode by combining a redox-active/Faradaic polymer,poly(norbornene-diphenothiazine)(PNP_(2)),with carbon nanotubes(CNTs)–PNP_(2)-CNT.The PNP_(2)-CNT demonstrated exceptional pseudocapacitance behavior,resulting in significantly accelerated adsorption rates for dichromate(Cr(Ⅵ);0.008 gmg^(-1) min^(-1))and arsenite(As(Ⅲ);0.03 gmg^(-1) min^(-1)),surpassing reported materials by a margin of 3–200 times,while demonstrating a high adsorption capacity,666.3 and 612.4 mg g^(-1),respectively.Furthermore,it effectively converted As(Ⅲ)to the less toxic arsenate(As(Ⅴ))during adsorption and Cr(Ⅵ)to the less toxic chromium(Cr(Ⅲ))during desorption.This PNP_(2)-CNT system also showed significantly lower energy consumption,only 0.17%of the CNT control system.This study demonstrated for the first time the use of PNP_(2) redox-active polymers in the separation and conversion process,meeting the six criteria of high uptake,rapid kinetics,selectivity,stability,recyclability,and energy efficiency.This achievement expands the scope of advanced materials that address environmental concerns and make an impact by generating energy-and cost-effective water purification.展开更多
Molecular catalysts can effectively steer the electrocatalytic acetylene semihydrogenation into ethylene,but realizing high Faradaic efficiency(FE)at industrial current densities remains a challenge.Herein,we report a...Molecular catalysts can effectively steer the electrocatalytic acetylene semihydrogenation into ethylene,but realizing high Faradaic efficiency(FE)at industrial current densities remains a challenge.Herein,we report a ligand engineering strategy that utilizes polymeric N–heterocyclic carbene(NHC)as a hydrophobic ligand to modulate the microenvironment of Cu sites.This polymeric NHC imparts appropriate hydrophobic properties for the chelated Cu sites,thereby moderating the H_(2)O transport and enabling easy access of acetylene.Consequently,the polymeric NHC chelated Cu exhibits an FE_(ethylene)of~97%at a current density of 500 m A/cm^(2)in a flow cell.Particularly in a zero-gap reactor,the FE_(ethylene)consistently exceeds 86%across current densities from 100 m A/cm^(2)to 400 m A/cm^(2),reaching an optimal FEethyleneof 98%at 200 m A/cm^(2)and achieving durable operation for 155 h at 100 m A/cm^(2).This work provides a promising paradigm to regulate the microenvironment of molecular catalysts for improving electrocatalytic performances under industrial current densities.展开更多
CO_(2)-to-CO electrolyzer technology converts carbon dioxide into carbon monoxide using electrochemical methods,offering significant environmental and energy benefits by aiding in greenhouse gas mitigation and promoti...CO_(2)-to-CO electrolyzer technology converts carbon dioxide into carbon monoxide using electrochemical methods,offering significant environmental and energy benefits by aiding in greenhouse gas mitigation and promoting a carbon circular economy.Recent study by Strasser et al.in Nature Chemical Engineering presents a high-performance CO_(2)-to-CO electrolyzer utilizing a NiNC catalyst with nearly 100%faradaic efficiency,employing innovative diagnostic tools like the carbon crossover coefficient(CCC)to address transport-related failures and optimize overall efficiency.Strasser’s research demonstrates the potential of NiNC catalysts,particularly NiNC-IMI,for efficient CO production in CO_(2)-to-CO electrolyzers,highlighting their high selectivity and performance.However,challenges such as localized CO_(2)depletion and mass transport limitations underscore the need for further optimization and development of diagnostic tools like CCC.Strategies for optimizing catalyst structure and operational parameters offer avenues for enhancing the performance and reliability of electrochemical CO_(2)reduction catalysts.展开更多
The low specific capacitances(SCs)of traditional carbonaceous negative electrodes significantly limit the enhancement in energy density of aqueous hybrid supercapacitors(AHCs).It is still hugely challengeable to explo...The low specific capacitances(SCs)of traditional carbonaceous negative electrodes significantly limit the enhancement in energy density of aqueous hybrid supercapacitors(AHCs).It is still hugely challengeable to explore a candidate with large SCs,which can stably operate in the negative potential region mean-while.For this propose,we design and fabricate solid-solution Ru_(x)Cu_(1-x)O_(2) nanocrystals(NCs),which exhibit competitive SCs and electrochemical stability within the potential range from-0.9 V to 0.0 V in the aqueous KOH electrolyte.The incorporation of Cu enhances the electrochemical utilization of RuO_(2),reaction kinetics,electronic conductivity,and hydrogen evolution overpotentials,which are all highly dependent upon the added contents of Cu species.The optimized Ru_(0.8)Cu_(0.2)O_(2)(RuCu82)electrode of a high mass loading of 5 mg cm^(-2) reveals the best electrochemical capacitances in terms of reversible SCs and capacitance degradation at room temperature and-20℃.Furthermore,the reversible K^(+)-(de)intercalation induced pseudocapacitance is proposed for electrochemical charge storage process of RuCu82.In particu-lar,remarkable specific energy of 59.1 Wh kg-1 at 400 W kg-1 and excellent cycling stability are achieved in the assembled NiCoO_(2)//RuCu82 AHCs.Our contribution here presents a new promising negative elec-trode platform with high SCs and electrochemical stability for next-generation AHCs.展开更多
An intrinsic Faradaic layer on the surface of a metal electrocatalyst is usually considered an active site for CO_(2) reduction.Different strategies have been used to improve the performance of CO_(2) reduction by adj...An intrinsic Faradaic layer on the surface of a metal electrocatalyst is usually considered an active site for CO_(2) reduction.Different strategies have been used to improve the performance of CO_(2) reduction by adjusting the intrinsic Faradaic layer.However,it is still challenging to achieve CO_(2) reduction with high activity,selectivity,and stability.In this study,for the first time,we improve the three parameters simultaneously by introducing a Zn(OH)_(x) over layer onto a CuSn electrocatalyst.We find that the intrinsic Faradaic layer of Sn(OH)_(x) on the surface of CuSn provides active sites for CO_(2) reduction,while Zn(OH)_(x) plays multiple roles as an adsorption/activation layer,a cover layer,and a protective layer.Further studies suggest that the enhanced activity comes from a Faradaic reaction of Zn(OH)_(x) during CO_(2) reduction,which can be considered as an extrinsic Faradaic layer.This new strategy of introducing an extrinsic Faradaic layer can deepen understanding of electrocatalytic process and offers guidance to design other high-performance electrocatalysts.展开更多
Electrochemical nitrogen reduction reaction(ENRR) provides a promising strategy to achieve sustainable synthesis of ammonia. However, despite great efforts devoted to this research field, the problems such as low ener...Electrochemical nitrogen reduction reaction(ENRR) provides a promising strategy to achieve sustainable synthesis of ammonia. However, despite great efforts devoted to this research field, the problems such as low energy efficiency and weak selectivity still impede its practical implementation. Most of the research to date has been concentrated on creating sophisticated electrocatalysts, and adequate knowledge of electrolytes is still lacking. Herein, the recent progress in electrolytes for ENRR, including alkaline, neutral,acidic, water-in-salt, organic, ionic liquid, and mixed water-organic electrolytes, is thoroughly reviewed to obtain an in-depth understanding of their effects on electrocatalytic performance. Recently developed representative electrocatalysts in various types of electrolytes are also introduced, and future research priorities of different electrolytes are proposed to develop new and efficient ENRR systems.展开更多
To avoid carbonate precipitation for CO_(2) electrolysis,developing CO_(2) conversion in an acid electrolyte is viewed as an ultimately challenging technology.In Nature,Xia et al.recently explored a proton-exchange me...To avoid carbonate precipitation for CO_(2) electrolysis,developing CO_(2) conversion in an acid electrolyte is viewed as an ultimately challenging technology.In Nature,Xia et al.recently explored a proton-exchange membrane system for reducing CO_(2) to formic acid with a Pb±Pb SO_(4) composite catalyst derived from waste lead-acid batteries based on the lattice carbon activation mechanism.Up to 93%Faradaic efficiency was realized when formic acid was produced by this technology.展开更多
The recent development of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide(CO) has attracted much attention due to their unique activity and selectivity compared to other metal catalysts. Pa...The recent development of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide(CO) has attracted much attention due to their unique activity and selectivity compared to other metal catalysts. Particularly, Cu is the unique electrocatalyst for COelectrochemical reduction with high selectivity to generate a variety of hydrocarbons. In this review, we mainly summarize the recent advances on the rational design of Cu nanostructures, the composition regulation of Cu-based alloys, and the exploitation of advanced supports for improving the catalytic activity and selectivity toward electrochemical reduction of CO. The special focus is to demonstrate how to enhance the activity and selectivity of Cubased electrocatalyst for COreduction. The perspectives and challenges for the development of Cu-based electrocatalysts are also addressed. We hope this review can provide timely and valuable insights into the design of advanced electrocatalytic materials for COelectrochemical reduction.展开更多
Electrochemical reduction of CO2 to produce value-added feedstock chemicals using high-performance electrocatalysts is a promising protocol to address the excessive CO2 in the atmosphere and the energy crisis. However...Electrochemical reduction of CO2 to produce value-added feedstock chemicals using high-performance electrocatalysts is a promising protocol to address the excessive CO2 in the atmosphere and the energy crisis. However, the high overpotential, low current density, and poor product selectivity for CO2 electroreduction greatly impede their practical applications. In this work, we develop an efficient catalyst for CO2 reduction to CO consisting of well-dispersed ZrO2 nanoparticles tightly anchored on nitrogendoped carbon nanosheets(ZrO2/N-C) for the first time. Importantly, the ZrO2 nanoparticles possess oxygen vacancies and defects, which regulate the electronic structure of catalyst and thus greatly enhance the electrocatalytic activity. Specifically, ZrO2/N-C demonstrates a high CO Faradaic efficiency(FE) of 64% at-0.4 V vs. the reversible hydrogen electrode(RHE) and a respectable current density of ~2.6 m A cm-2 in CO2-saturated 0.5 M KHCO 3 solution. This work opens a new avenue for developing excellent catalysts for CO2 electroreduction with metal oxide/heteroatom-doped carbon composite structure.展开更多
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el...Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.展开更多
Lithium-ion batteries(LIBs)have been used to power various electric devices and store energy,but their toxic components by using inorganic materials generally cause serious environmental issues when disused.Recently,e...Lithium-ion batteries(LIBs)have been used to power various electric devices and store energy,but their toxic components by using inorganic materials generally cause serious environmental issues when disused.Recently,environmentally friendly and naturally abundant organic compounds have been adopted as promising electrode materials for next-generation LIBs.Herein,a new organic anode electrode based on sodium citrate is proposed,which shows gradually activated electrochemical behavior and delivers a high reversible capacity of 776.8 mAh·g^(-1)after 1770 cycles at a current density of 2 A·g^(-1).With the aid of the electrochemical characterization,Fourier-transform infrared(FTIR)and X-ray photoelectron spectroscopy(XPS)analysis,the lithium uptake mechanism of sodium citrate-based anodes is identified to be a combination of three-electron lithiation/delithiation and fast Li+intercalation/deintercalation processes,in which Faradaic reactions could offer a theoretical contribution of312 mAh·g^(-1)and intercalation pseudocapacitance would provide extra capacity.This work demonstrates the great potential for developing high-capacity organic electrodes for LIBs in future.展开更多
Preciously tuning the surface composition of noble metal nanoparticles with the particle size of only 2 nm or less by alloying with other metals represents a powerful strategy to boost their electrocatalytic selectivi...Preciously tuning the surface composition of noble metal nanoparticles with the particle size of only 2 nm or less by alloying with other metals represents a powerful strategy to boost their electrocatalytic selectivity.However,the synthesis of ultrafine nanoalloys and tuning their surface composition remain challenging.In this report,ultrafine CuPd nanoalloys with the particle size of ca.2 nm are synthesized based on the galvanic replacement reaction between presynthesized Cu nanoparticles and Pd2+precursors,and the tuning of their surface compositions is also achieved by changing the atom ratios of Cu/Pd.For the electrocatalytic reduction of CO2,Cu5Pd5 nanoalloys show the CO Faradaic efficiency(FE)of 88%at−0.87 V,and the corresponding mass activity reaches 56 A/g that is much higher than those of Cu8Pd2 nanoalloys,Cu3Pd7 nanoalloys and most of previously reported catalysts.Density functional theory uncovers that with the increase of Pd on the surface of the ultrafine CuPd nanoalloys,the adsorbed energy of both of intermediate COOH*and CO*to the Pd sites is strengthened.The Cu5Pd5 nanoalloys with the optimal surface composition better balance the adsorption of COOH*and desorption of CO*,achieving the highest selectivity and activity.The difficult liberation of absorbed CO*on the surface of Cu3Pd7 nanoalloys provides carbon source to favor the production of ethylene,endowing the Cu3Pd7 nanoalloys with the highest selectivity for ethylene among these ultrafine CuPd nanoalloys.展开更多
Recently,a disruptive idea was reported about the discovery of a new type of battery named Liquid Displacement Battery(LDB)comprising liquid metal electrodes and molten salt electrolyte.This cell featured a novel conc...Recently,a disruptive idea was reported about the discovery of a new type of battery named Liquid Displacement Battery(LDB)comprising liquid metal electrodes and molten salt electrolyte.This cell featured a novel concept of a porous electronically conductive faradaic membrane instead of the traditional ion-selective ceramic membrane.LDBs are attractive for stationary storage applications but need mitigation against self-discharge.In the instant battery chemistry,Li|LiCl-PbCl_(2)|Pb,reducing the diffusion coefficient of lead ions can be a way forward and a solution can be the addition of Pb O to the electrolyte.The latter acts as a supplementary barrier and complements the function of the faradaic membrane.The remedial actions improved the cell’s coulombic efficiency from 92%to 97%without affecting the voltage efficiency.In addition,the limiting current density of a 500 m Ah cell increased from 575 to 831 m A cm;and the limiting power from 2.53 to 3.66 W.Finally,the effect of Pb O on the impedance and polarization of the cell was also studied.展开更多
Highly active N,O-doped hierarchical porous carbons(NOCs)are fabricated through the in-situ polymerization and pyrolysis of o-tolidine and p-benzoquinone.As-prepared NOCs have a variety of faradaic-active species(N-6,...Highly active N,O-doped hierarchical porous carbons(NOCs)are fabricated through the in-situ polymerization and pyrolysis of o-tolidine and p-benzoquinone.As-prepared NOCs have a variety of faradaic-active species(N-6,N-5 and O-I),high ion-accessible platform(1799 m^2/g)and hierarchically micro-meso-macro porous architecture.Consequently,the resultant NOC electrode delivers an advantageous specific capacitance(311 F/g),with a pseudocapacitive contribution of 37%in a threeelectrode configuration,and an enhanced energy output of 18.0 Wh/kg@350 W/kg owing to the enlarged faradaic effect in an aqueous redox-active cell.Besides,a competitive energy density(74.9 Wh/kg)and high-potential durability(87.8%)are achieved in an ionic liquid(EMIMB F4)-assembled device.This study sheds light on a straightforward avenue to optimize the faradaic activity and nanoarchitecture for advanced supercapacitors.展开更多
Seeking and developing efficient CO_(2)reduction reaction(CO_(2)RR)electrocatalysts is a hot topic in this era of global warming.Among material candidates for sustainable and cost-effective applications,metal sulfides...Seeking and developing efficient CO_(2)reduction reaction(CO_(2)RR)electrocatalysts is a hot topic in this era of global warming.Among material candidates for sustainable and cost-effective applications,metal sulfides have attracted attention as promising nature-inspired materials due to multiple adsorption sites which are enhanced by the covalent character of sulfur.This article summarizes the current status regarding the utilization and development of metal sulfide materials as CO_(2)RR electrocatalysts.First,the research background and basic principles of electrochemical CO_(2)RR are introduced.Next,an overview of the main obstacles to developing efficient CO_(2)RR electrocatalysts is presented.The section is followed by a summary of the empirical evidence supporting the application of metal sulfides as CO_(2)RR electrocatalysts beside nature-inspired motivation.The summary of synthesis methods of various metal sulfides is also presented.Furthermore,the paper also highlights the recent works on metal sulfide as efficient CO_(2)RR including the undertaking strategy on the activity enhancement,and finally,discusses the challenges and prospect of metal sulfides-based CO_(2)RR electrocatalysts.Despite recent efforts,metal sulfides remain relatively unexplored as materials for CO_(2)RR electrocatalytic applications.Therefore,this review aims to stimulate novel ideas and research for improved catalyst designs and functionality.展开更多
The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide(CO_(2)) concentration. Consequently, developing and implementing effective solutions to reduce C...The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide(CO_(2)) concentration. Consequently, developing and implementing effective solutions to reduce CO_(2) emissions is a global priority. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is strongly believed to be a promising alternative to fossil fuel-based technologies for the production of value-added chemicals. So far, the implementation of CO_(2)RR is hindered by associated electrochemical reactions, such as low selectivity, hydrogen evolution reaction(HER), and additional overpotential induced in some cases. As a result, it is necessary to conduct a timely evaluation of the state-of-the-art strategies in CO_(2)RR, with a focus on the engineering of the electrocatalytic systems. Catalyst morphology is one factor that plays a critical role in overcoming these drawbacks and significantly contributes to enhancing product selectivity and Faradaic efficiency(FE). This review article summarizes the recent advances in the rational design of electrocatalysts with various morphologies and the influence of these morphologies on CO_(2)RR. To compare literature findings in a meaningful way, the article focuses on results reported under a well-defined period and considers the first three rows of the d-block metal catalysts. The discussion typically covers the design of nanostructured catalysts and the molecular-level understanding of morphology-performance relationship in terms of activity, selectivity, and stability during CO_(2) electrolysis. Among others, it would be convenient to recommend a comprehensive discussion on the morphologies of single metals and heterostructures, with a detailed emphasis on their impact on CO_(2) conversion.展开更多
基金supported by the National Research Foundation of Korea grant funded by the Korean government (MSIT)(2020R1A2C1101039)the Commercializations Promotion Agency for R&D Outcomes (COMPA) grant funded by the Korea government(MSIT)(2021E200)+1 种基金supported by“Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(MOE)(2021RIS-004)supported by the Soonchunhyang University Research Fund。
文摘Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additional energy storing capability via electrochemical faradaic contribution on electrodes for high-performance flexible ESSs.Particularly,determining effective material combinations between electrodes and RMs is essential for maximizing surface faradaic redox reactions for energy-storage performance.In this study,an electrode-RM system comprising heterostructured hybrid(carbon fiber(CF)/MnO_(2)) faradaic electrodes and iodine RMs(I-RMs) in a redox-active electrolyte is investigated.The CF/MnO_(2)with the 1-RMs(CF/MnO_(2)-I) induces dominant catalytic faradaic interaction with the I-RMs,significantly enhancing the surface faradaic kinetics and increasing the overall energy-storage performance.The CF/MnO_(2)-I ESSs show a 12.6-fold(or higher) increased volumetric energy density of 793.81 mWh L^(-1)at a current of 10 μA relative to ESSs using CF/MnO_(2)without I-RMs(CF/MnO_(2)).Moreover,the CF/MnO_(2)-I retains 93.1% of its initial capacitance after 10,000 cycles,validating the excellent cyclability.Finally,the flexibility of the ESSs is tested at different bending angles(180° to 0°),demonstrating its feasibility for flexible and high-wear environments.Therefore,CF/MnO_(2)electrodes present a practical material combination for high-performance flexible energy-storage devices owing to the catalytic faradaic interaction with I-RMs.
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.
基金financially supported by the National Natural Science Foundation of China(Grants 22225901,21975237 and 51702312)the Fundamental Research Funds for the Central Universities(Grant WK2340000101)+5 种基金the USTC Research Funds of the Double First-Class Initiative(Grant YD2340002007 and YD9990002017)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(Grant RERU2022007)the China Postdoctoral Science Foundation(Grants 2023M733371,2024M750006 and 2023T160617)Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation(GZC20230008)the Natural Science Foundation Youth Project of Anhui Province(2408085QB065)the Postdoctoral Research Funding Project of Anhui Province(2023B727)。
文摘The electrochemical reduction of carbon dioxide(CO_(2))into value-added chemicals and fuels has been extensively studied as a promising strategy for mitigating environmental issues and achieving sustainable energy conversion.Substantial efforts have been made to improve the understanding of CO_(2)reduction reaction(CO_(2)RR)mechanisms by computational and spectroscopic studies.An in-depth understanding of CO_(2)RR mechanism can provide the guidance and criteria for designing high-efficiency catalysts,and hence,steering CO_(2)RR to desired products.This review systematically discusses the formation mechanisms and reaction pathways of various CO_(2)RR products,including C_(1)products(CO,HCOOH,and CH_(4)),C_(2)products(C_(2)H_(4),C_(2)H_(5)OH,and CH_(3)COOH),and C_(3+)products(C_(3)H_(6),C_(3)H_(7)OH,and others).The reaction pathways are elucidated by analyzing the adsorption behavior,energy barriers,and intermediate coupling steps involved in the generation of each product.Particular emphasis is placed on the key intermediates,such as^(*)OCHO,^(*)COOH,^(*)CO,^(*)OCCOH,and^(*)CCO,which play crucial roles in determining the product selectivity.The effects of catalyst composition,morphology,and electronic structure on the adsorption and activation of these intermediates are also discussed.Moreover,advanced characterization techniques,including in-situ spectroscopy and isotopic labeling experiments,are highlighted for their contributions to unraveling the reaction mechanisms.The review aims to provide critical insights to reveal the activity-determining para meters and underlying CO_(2)RR mechanisms,which will guide the rational design of next-generation electrocatalysts for selective CO^(2)RR towards high-value products.
基金supported by the Research Grants Council of the Hong Kong SAR Government(Early Career Scheme,#26309420,and General Research Fund,#16306921 and#16306022)the Department of Chemical and Biomolecular Engineering,HKUST(startup funding)+1 种基金sponsored by the Shanghai Jiao Tong University High-End Computing Center.Y.W.would like to thank the support from the National Natural Science Foundation of China(No.52102183,No.52281240409)the Natural Science Foundation of Shanghai(No.22ZR1433400).
文摘Drinking water contamination by heavy metals,particularly chromium and arsenic oxyanions,is a severe challenge threatening humanity’s sustainable development.Electrochemically mediated water purification is gaining attention due to its high uptake,rapid kinetics,modularity,and facile regeneration.Here,we designed a composite electrode by combining a redox-active/Faradaic polymer,poly(norbornene-diphenothiazine)(PNP_(2)),with carbon nanotubes(CNTs)–PNP_(2)-CNT.The PNP_(2)-CNT demonstrated exceptional pseudocapacitance behavior,resulting in significantly accelerated adsorption rates for dichromate(Cr(Ⅵ);0.008 gmg^(-1) min^(-1))and arsenite(As(Ⅲ);0.03 gmg^(-1) min^(-1)),surpassing reported materials by a margin of 3–200 times,while demonstrating a high adsorption capacity,666.3 and 612.4 mg g^(-1),respectively.Furthermore,it effectively converted As(Ⅲ)to the less toxic arsenate(As(Ⅴ))during adsorption and Cr(Ⅵ)to the less toxic chromium(Cr(Ⅲ))during desorption.This PNP_(2)-CNT system also showed significantly lower energy consumption,only 0.17%of the CNT control system.This study demonstrated for the first time the use of PNP_(2) redox-active polymers in the separation and conversion process,meeting the six criteria of high uptake,rapid kinetics,selectivity,stability,recyclability,and energy efficiency.This achievement expands the scope of advanced materials that address environmental concerns and make an impact by generating energy-and cost-effective water purification.
基金supported by the National Natural Science Foundation of China(Nos.22475170,52101271,22375166)the Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515111017,2024A1515011977)the Key Research and Development Program of Shaanxi Province(No.2024GX-YBXM379)。
文摘Molecular catalysts can effectively steer the electrocatalytic acetylene semihydrogenation into ethylene,but realizing high Faradaic efficiency(FE)at industrial current densities remains a challenge.Herein,we report a ligand engineering strategy that utilizes polymeric N–heterocyclic carbene(NHC)as a hydrophobic ligand to modulate the microenvironment of Cu sites.This polymeric NHC imparts appropriate hydrophobic properties for the chelated Cu sites,thereby moderating the H_(2)O transport and enabling easy access of acetylene.Consequently,the polymeric NHC chelated Cu exhibits an FE_(ethylene)of~97%at a current density of 500 m A/cm^(2)in a flow cell.Particularly in a zero-gap reactor,the FE_(ethylene)consistently exceeds 86%across current densities from 100 m A/cm^(2)to 400 m A/cm^(2),reaching an optimal FEethyleneof 98%at 200 m A/cm^(2)and achieving durable operation for 155 h at 100 m A/cm^(2).This work provides a promising paradigm to regulate the microenvironment of molecular catalysts for improving electrocatalytic performances under industrial current densities.
基金the University of Oxford for the Mathematical, Physical and Life Sciences Division (MPLS) Enterprise and Innovation Fellowshipthe support of Massachusetts Institute of Technology+1 种基金the support of the National Key R&D Program of China (2021YFB3801600)the National Natural Science Foundation of China (22325204)。
文摘CO_(2)-to-CO electrolyzer technology converts carbon dioxide into carbon monoxide using electrochemical methods,offering significant environmental and energy benefits by aiding in greenhouse gas mitigation and promoting a carbon circular economy.Recent study by Strasser et al.in Nature Chemical Engineering presents a high-performance CO_(2)-to-CO electrolyzer utilizing a NiNC catalyst with nearly 100%faradaic efficiency,employing innovative diagnostic tools like the carbon crossover coefficient(CCC)to address transport-related failures and optimize overall efficiency.Strasser’s research demonstrates the potential of NiNC catalysts,particularly NiNC-IMI,for efficient CO production in CO_(2)-to-CO electrolyzers,highlighting their high selectivity and performance.However,challenges such as localized CO_(2)depletion and mass transport limitations underscore the need for further optimization and development of diagnostic tools like CCC.Strategies for optimizing catalyst structure and operational parameters offer avenues for enhancing the performance and reliability of electrochemical CO_(2)reduction catalysts.
基金supported by the National Natural Science Foundation of China(Nos.U22A20145,51904115,52072151,52171211,and 52271218)Jinan Independent Innovative Team(No.2020GXRC015)the Major Program of Shandong Province Natural Science Foundation(Nos.ZR2023ZD43 and ZR2021ZD05).
文摘The low specific capacitances(SCs)of traditional carbonaceous negative electrodes significantly limit the enhancement in energy density of aqueous hybrid supercapacitors(AHCs).It is still hugely challengeable to explore a candidate with large SCs,which can stably operate in the negative potential region mean-while.For this propose,we design and fabricate solid-solution Ru_(x)Cu_(1-x)O_(2) nanocrystals(NCs),which exhibit competitive SCs and electrochemical stability within the potential range from-0.9 V to 0.0 V in the aqueous KOH electrolyte.The incorporation of Cu enhances the electrochemical utilization of RuO_(2),reaction kinetics,electronic conductivity,and hydrogen evolution overpotentials,which are all highly dependent upon the added contents of Cu species.The optimized Ru_(0.8)Cu_(0.2)O_(2)(RuCu82)electrode of a high mass loading of 5 mg cm^(-2) reveals the best electrochemical capacitances in terms of reversible SCs and capacitance degradation at room temperature and-20℃.Furthermore,the reversible K^(+)-(de)intercalation induced pseudocapacitance is proposed for electrochemical charge storage process of RuCu82.In particu-lar,remarkable specific energy of 59.1 Wh kg-1 at 400 W kg-1 and excellent cycling stability are achieved in the assembled NiCoO_(2)//RuCu82 AHCs.Our contribution here presents a new promising negative elec-trode platform with high SCs and electrochemical stability for next-generation AHCs.
基金supported by the National Key R&D Program of China(nos.2017YFE0120700 and 2018YFE0208500)the National Natural Science Foundation of China(nos.21875105 and 51972164)+1 种基金the National Scientific Instrument Development Major Project of National Natural Science Foundation of China(no.51627810)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(no.XHD2020-002).
文摘An intrinsic Faradaic layer on the surface of a metal electrocatalyst is usually considered an active site for CO_(2) reduction.Different strategies have been used to improve the performance of CO_(2) reduction by adjusting the intrinsic Faradaic layer.However,it is still challenging to achieve CO_(2) reduction with high activity,selectivity,and stability.In this study,for the first time,we improve the three parameters simultaneously by introducing a Zn(OH)_(x) over layer onto a CuSn electrocatalyst.We find that the intrinsic Faradaic layer of Sn(OH)_(x) on the surface of CuSn provides active sites for CO_(2) reduction,while Zn(OH)_(x) plays multiple roles as an adsorption/activation layer,a cover layer,and a protective layer.Further studies suggest that the enhanced activity comes from a Faradaic reaction of Zn(OH)_(x) during CO_(2) reduction,which can be considered as an extrinsic Faradaic layer.This new strategy of introducing an extrinsic Faradaic layer can deepen understanding of electrocatalytic process and offers guidance to design other high-performance electrocatalysts.
基金financially supported by the National Natural Science Foundation of China (No.22272150)the Major Program of Zhejiang Provincial Natural Science Foundation of China(Nos.LD22B030002 and LZ23B030002)+1 种基金the Zhejiang Provincial Ten Thousand Talent Program (No.2021R51009)the Key Science and Technology Project of Jinhua City (No.2020-1-044)。
文摘Electrochemical nitrogen reduction reaction(ENRR) provides a promising strategy to achieve sustainable synthesis of ammonia. However, despite great efforts devoted to this research field, the problems such as low energy efficiency and weak selectivity still impede its practical implementation. Most of the research to date has been concentrated on creating sophisticated electrocatalysts, and adequate knowledge of electrolytes is still lacking. Herein, the recent progress in electrolytes for ENRR, including alkaline, neutral,acidic, water-in-salt, organic, ionic liquid, and mixed water-organic electrolytes, is thoroughly reviewed to obtain an in-depth understanding of their effects on electrocatalytic performance. Recently developed representative electrocatalysts in various types of electrolytes are also introduced, and future research priorities of different electrolytes are proposed to develop new and efficient ENRR systems.
基金supported by the Science and Technology Project of Hebei Education Department (Grant No.JZX20230004)National Natural Science Fund of China (Grant No.12172118)+1 种基金Research Program of Local Science and Technology Development under the guidance of Central China (Grant No.216Z4402G)Open Project of the Chongqing Key Laboratory of Green (Grant No.GATRI2021F01005B).
基金supported by the Natural Science Foundation of China (No. 22268003)。
文摘To avoid carbonate precipitation for CO_(2) electrolysis,developing CO_(2) conversion in an acid electrolyte is viewed as an ultimately challenging technology.In Nature,Xia et al.recently explored a proton-exchange membrane system for reducing CO_(2) to formic acid with a Pb±Pb SO_(4) composite catalyst derived from waste lead-acid batteries based on the lattice carbon activation mechanism.Up to 93%Faradaic efficiency was realized when formic acid was produced by this technology.
基金financially supported by the Natural Scientific Foundation of China(no.21503116)the Open Funds of the State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology(oic-201601008)+2 种基金the Qingdao Basic&Applied Research Project(15-9-1-100-jch)Taishan Scholars Program of Shandong Province(no.tsqn20161004)the Youth 1000 Talent Program of China
文摘The recent development of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide(CO) has attracted much attention due to their unique activity and selectivity compared to other metal catalysts. Particularly, Cu is the unique electrocatalyst for COelectrochemical reduction with high selectivity to generate a variety of hydrocarbons. In this review, we mainly summarize the recent advances on the rational design of Cu nanostructures, the composition regulation of Cu-based alloys, and the exploitation of advanced supports for improving the catalytic activity and selectivity toward electrochemical reduction of CO. The special focus is to demonstrate how to enhance the activity and selectivity of Cubased electrocatalyst for COreduction. The perspectives and challenges for the development of Cu-based electrocatalysts are also addressed. We hope this review can provide timely and valuable insights into the design of advanced electrocatalytic materials for COelectrochemical reduction.
基金The financial supports from the National 1000 Young Talents Program of Chinathe National Natural Science Foundation of China (Grant no. 21603078)
文摘Electrochemical reduction of CO2 to produce value-added feedstock chemicals using high-performance electrocatalysts is a promising protocol to address the excessive CO2 in the atmosphere and the energy crisis. However, the high overpotential, low current density, and poor product selectivity for CO2 electroreduction greatly impede their practical applications. In this work, we develop an efficient catalyst for CO2 reduction to CO consisting of well-dispersed ZrO2 nanoparticles tightly anchored on nitrogendoped carbon nanosheets(ZrO2/N-C) for the first time. Importantly, the ZrO2 nanoparticles possess oxygen vacancies and defects, which regulate the electronic structure of catalyst and thus greatly enhance the electrocatalytic activity. Specifically, ZrO2/N-C demonstrates a high CO Faradaic efficiency(FE) of 64% at-0.4 V vs. the reversible hydrogen electrode(RHE) and a respectable current density of ~2.6 m A cm-2 in CO2-saturated 0.5 M KHCO 3 solution. This work opens a new avenue for developing excellent catalysts for CO2 electroreduction with metal oxide/heteroatom-doped carbon composite structure.
基金supported by the Ministry of Science and Technology of China(Grant No:2012CB215500 and 2013CB933100)the National Natural Science Foundation of China(Grant No:21103178 and 21033009)
文摘Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.
基金financially supported by the National Natural Science Foundation of China(Nos.21875155,51675275 and 21473119)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJQN201900527)the support from the Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province,Suzhou,China。
文摘Lithium-ion batteries(LIBs)have been used to power various electric devices and store energy,but their toxic components by using inorganic materials generally cause serious environmental issues when disused.Recently,environmentally friendly and naturally abundant organic compounds have been adopted as promising electrode materials for next-generation LIBs.Herein,a new organic anode electrode based on sodium citrate is proposed,which shows gradually activated electrochemical behavior and delivers a high reversible capacity of 776.8 mAh·g^(-1)after 1770 cycles at a current density of 2 A·g^(-1).With the aid of the electrochemical characterization,Fourier-transform infrared(FTIR)and X-ray photoelectron spectroscopy(XPS)analysis,the lithium uptake mechanism of sodium citrate-based anodes is identified to be a combination of three-electron lithiation/delithiation and fast Li+intercalation/deintercalation processes,in which Faradaic reactions could offer a theoretical contribution of312 mAh·g^(-1)and intercalation pseudocapacitance would provide extra capacity.This work demonstrates the great potential for developing high-capacity organic electrodes for LIBs in future.
基金National Natural Science Foundation of China,Grant/Award Numbers:21573240,21706265,21922813The would like to acknowledge the support provided by the National Natural Science Foundation of China(Grant no.:21573240 and 21706265)+2 种基金the Center for Mesoscience,Institute of Process Engineering,Chinese Academy of Sciences(MPCS-2017-A-02)State Key Laboratory of Multiphase Complex Systems(MPCS-2019-A-09)National Science Fund for Excellent Young Scholars(21922813).
文摘Preciously tuning the surface composition of noble metal nanoparticles with the particle size of only 2 nm or less by alloying with other metals represents a powerful strategy to boost their electrocatalytic selectivity.However,the synthesis of ultrafine nanoalloys and tuning their surface composition remain challenging.In this report,ultrafine CuPd nanoalloys with the particle size of ca.2 nm are synthesized based on the galvanic replacement reaction between presynthesized Cu nanoparticles and Pd2+precursors,and the tuning of their surface compositions is also achieved by changing the atom ratios of Cu/Pd.For the electrocatalytic reduction of CO2,Cu5Pd5 nanoalloys show the CO Faradaic efficiency(FE)of 88%at−0.87 V,and the corresponding mass activity reaches 56 A/g that is much higher than those of Cu8Pd2 nanoalloys,Cu3Pd7 nanoalloys and most of previously reported catalysts.Density functional theory uncovers that with the increase of Pd on the surface of the ultrafine CuPd nanoalloys,the adsorbed energy of both of intermediate COOH*and CO*to the Pd sites is strengthened.The Cu5Pd5 nanoalloys with the optimal surface composition better balance the adsorption of COOH*and desorption of CO*,achieving the highest selectivity and activity.The difficult liberation of absorbed CO*on the surface of Cu3Pd7 nanoalloys provides carbon source to favor the production of ethylene,endowing the Cu3Pd7 nanoalloys with the highest selectivity for ethylene among these ultrafine CuPd nanoalloys.
基金financially supported by the research unit of Group Sadoway Laboratory,Department of Materials Science and Engineering,Massachusetts Institute of Technology,77 Massachusetts Avenue,Cambridge,MA,02139-4307,United Statesthe Portuguese Foundation for Science and Technology(FCT)for his Ph.D.scholarship(PD/BD/128041/2016)+2 种基金financially supported by the Base Funding(UIDB/00511/2020)of the Laboratory for Process Engineering,Environment,Biotechnology and Energy–LEPABEfunded by national funds through the FCT/MCTES(PIDDAC)continuous support from MIT Portugal Program。
文摘Recently,a disruptive idea was reported about the discovery of a new type of battery named Liquid Displacement Battery(LDB)comprising liquid metal electrodes and molten salt electrolyte.This cell featured a novel concept of a porous electronically conductive faradaic membrane instead of the traditional ion-selective ceramic membrane.LDBs are attractive for stationary storage applications but need mitigation against self-discharge.In the instant battery chemistry,Li|LiCl-PbCl_(2)|Pb,reducing the diffusion coefficient of lead ions can be a way forward and a solution can be the addition of Pb O to the electrolyte.The latter acts as a supplementary barrier and complements the function of the faradaic membrane.The remedial actions improved the cell’s coulombic efficiency from 92%to 97%without affecting the voltage efficiency.In addition,the limiting current density of a 500 m Ah cell increased from 575 to 831 m A cm;and the limiting power from 2.53 to 3.66 W.Finally,the effect of Pb O on the impedance and polarization of the cell was also studied.
基金financially supported by the National Natural Science Foundation of China(Nos.21905207,21875165,51772216,and 21703161)the Science and Technology Commission of Shanghai Municipality,China(No.14DZ2261100)+1 种基金the Natural Foundation of Hubei Province of China(No.2014CFB782)the Fundamental Research Funds for the Central Universities。
文摘Highly active N,O-doped hierarchical porous carbons(NOCs)are fabricated through the in-situ polymerization and pyrolysis of o-tolidine and p-benzoquinone.As-prepared NOCs have a variety of faradaic-active species(N-6,N-5 and O-I),high ion-accessible platform(1799 m^2/g)and hierarchically micro-meso-macro porous architecture.Consequently,the resultant NOC electrode delivers an advantageous specific capacitance(311 F/g),with a pseudocapacitive contribution of 37%in a threeelectrode configuration,and an enhanced energy output of 18.0 Wh/kg@350 W/kg owing to the enlarged faradaic effect in an aqueous redox-active cell.Besides,a competitive energy density(74.9 Wh/kg)and high-potential durability(87.8%)are achieved in an ionic liquid(EMIMB F4)-assembled device.This study sheds light on a straightforward avenue to optimize the faradaic activity and nanoarchitecture for advanced supercapacitors.
基金The present work was supported by JSPS KAKENHI(Grant number 18H05159)in Scientific Research on Innovative Areas“Innovations for Light Energy Conversion(I4 LEC)”from MEXT,Japan,and was also supported by the JST Strategic International Collaborative Research Program(SICORP),Japan(Grant number JPMJSC18H7)International Science and Technology Cooperation Program(Grant No.2017YFE0127800),China.
文摘Seeking and developing efficient CO_(2)reduction reaction(CO_(2)RR)electrocatalysts is a hot topic in this era of global warming.Among material candidates for sustainable and cost-effective applications,metal sulfides have attracted attention as promising nature-inspired materials due to multiple adsorption sites which are enhanced by the covalent character of sulfur.This article summarizes the current status regarding the utilization and development of metal sulfide materials as CO_(2)RR electrocatalysts.First,the research background and basic principles of electrochemical CO_(2)RR are introduced.Next,an overview of the main obstacles to developing efficient CO_(2)RR electrocatalysts is presented.The section is followed by a summary of the empirical evidence supporting the application of metal sulfides as CO_(2)RR electrocatalysts beside nature-inspired motivation.The summary of synthesis methods of various metal sulfides is also presented.Furthermore,the paper also highlights the recent works on metal sulfide as efficient CO_(2)RR including the undertaking strategy on the activity enhancement,and finally,discusses the challenges and prospect of metal sulfides-based CO_(2)RR electrocatalysts.Despite recent efforts,metal sulfides remain relatively unexplored as materials for CO_(2)RR electrocatalytic applications.Therefore,this review aims to stimulate novel ideas and research for improved catalyst designs and functionality.
文摘The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide(CO_(2)) concentration. Consequently, developing and implementing effective solutions to reduce CO_(2) emissions is a global priority. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is strongly believed to be a promising alternative to fossil fuel-based technologies for the production of value-added chemicals. So far, the implementation of CO_(2)RR is hindered by associated electrochemical reactions, such as low selectivity, hydrogen evolution reaction(HER), and additional overpotential induced in some cases. As a result, it is necessary to conduct a timely evaluation of the state-of-the-art strategies in CO_(2)RR, with a focus on the engineering of the electrocatalytic systems. Catalyst morphology is one factor that plays a critical role in overcoming these drawbacks and significantly contributes to enhancing product selectivity and Faradaic efficiency(FE). This review article summarizes the recent advances in the rational design of electrocatalysts with various morphologies and the influence of these morphologies on CO_(2)RR. To compare literature findings in a meaningful way, the article focuses on results reported under a well-defined period and considers the first three rows of the d-block metal catalysts. The discussion typically covers the design of nanostructured catalysts and the molecular-level understanding of morphology-performance relationship in terms of activity, selectivity, and stability during CO_(2) electrolysis. Among others, it would be convenient to recommend a comprehensive discussion on the morphologies of single metals and heterostructures, with a detailed emphasis on their impact on CO_(2) conversion.