In this paper,we propose a deformed Reuleaux-triangle resonator(RTR)to form exceptional point(EP)which results in the detection sensitivity enhancement of nanoparticle.After introducing single nanoparticle to the defo...In this paper,we propose a deformed Reuleaux-triangle resonator(RTR)to form exceptional point(EP)which results in the detection sensitivity enhancement of nanoparticle.After introducing single nanoparticle to the deformed RTR at EP,frequency splitting obtains an enhancement of more than 6 times compared with non-deformed RTR.In addition,EP induced a result that the far feld pattern of chiral mode responses signifcantly to external perturbation,corresponding to the change in internal chirality.Therefore,single nanoparticle with far distance of more than 4000 nm can be detected by measuring the variation of far feld directional emission.Compared to traditional frequency splitting,the far feld pattern produced in deformed RTR provides a cost-efective and convenient path to detect single nanoparticle at a long distance,without using tunable laser and external coupler.Our structure indicates great potential in high sensitivity sensor and label-free detector.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)(Grant Nos.62022053 and 62205192)in part by the Science and Technology Commission of Shanghai Municipality Project(22010500100,22ZR1424800)+1 种基金in part by the Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF002)and in part by the 111 Project(D20031).
文摘In this paper,we propose a deformed Reuleaux-triangle resonator(RTR)to form exceptional point(EP)which results in the detection sensitivity enhancement of nanoparticle.After introducing single nanoparticle to the deformed RTR at EP,frequency splitting obtains an enhancement of more than 6 times compared with non-deformed RTR.In addition,EP induced a result that the far feld pattern of chiral mode responses signifcantly to external perturbation,corresponding to the change in internal chirality.Therefore,single nanoparticle with far distance of more than 4000 nm can be detected by measuring the variation of far feld directional emission.Compared to traditional frequency splitting,the far feld pattern produced in deformed RTR provides a cost-efective and convenient path to detect single nanoparticle at a long distance,without using tunable laser and external coupler.Our structure indicates great potential in high sensitivity sensor and label-free detector.