The proposed algorithm introduces a novel vague set approach to develop a selective but robust, flexible and intelligent contrast enhancement technique for mammograms. Wavelet based filtering analysis can produce Low ...The proposed algorithm introduces a novel vague set approach to develop a selective but robust, flexible and intelligent contrast enhancement technique for mammograms. Wavelet based filtering analysis can produce Low Frequency (LF) and High Frequency (HF) subbands of the original input images. The extremely small size microcalcifications become visible under multiresolution techniques. LF subband is then fuzzified by conventional fuzzy c-means clustering (FCM) algorithm with justified number of clusters. HF components, representing the narrow protrusions and other fine details are also fuzzified by FCM with justified number of clusters. Vague set approach captures the hesitancies and uncertainties of truly affected masses/other breast abnormalities with normal glandular tissues. After highlighting the masses/microcalcifications accurately, both LF and HF subbands are transformed back to the original resolution by inverse wavelet transform. The results show that the proposed method can successfully enhance the selected regions of mammograms and provide better contrast images for visual interpretation.展开更多
文摘The proposed algorithm introduces a novel vague set approach to develop a selective but robust, flexible and intelligent contrast enhancement technique for mammograms. Wavelet based filtering analysis can produce Low Frequency (LF) and High Frequency (HF) subbands of the original input images. The extremely small size microcalcifications become visible under multiresolution techniques. LF subband is then fuzzified by conventional fuzzy c-means clustering (FCM) algorithm with justified number of clusters. HF components, representing the narrow protrusions and other fine details are also fuzzified by FCM with justified number of clusters. Vague set approach captures the hesitancies and uncertainties of truly affected masses/other breast abnormalities with normal glandular tissues. After highlighting the masses/microcalcifications accurately, both LF and HF subbands are transformed back to the original resolution by inverse wavelet transform. The results show that the proposed method can successfully enhance the selected regions of mammograms and provide better contrast images for visual interpretation.