False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail...False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.展开更多
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
Although digital changes in power systems have added more ways to monitor and control them,these changes have also led to new cyber-attack risks,mainly from False Data Injection(FDI)attacks.If this happens,the sensors...Although digital changes in power systems have added more ways to monitor and control them,these changes have also led to new cyber-attack risks,mainly from False Data Injection(FDI)attacks.If this happens,the sensors and operations are compromised,which can lead to big problems,disruptions,failures and blackouts.In response to this challenge,this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory(Bi-LSTM)networks and employs explanatory methods from Artificial Intelligence(AI).Not only does the suggested architecture detect potential fraud with high accuracy,but it also makes its decisions transparent,enabling operators to take appropriate action.Themethod developed here utilizesmodel-free,interpretable tools to identify essential input elements,thereby making predictions more understandable and usable.Enhancing detection performance is made possible by correcting class imbalance using Synthetic Minority Over-sampling Technique(SMOTE)-based data balancing.Benchmark power system data confirms that the model functions correctly through detailed experiments.Experimental results showed that Bi-LSTM+Explainable AI(XAI)achieved an average accuracy of 94%,surpassing XGBoost(89%)and Bagging(84%),while ensuring explainability and a high level of robustness across various operating scenarios.By conducting an ablation study,we find that bidirectional recursive modeling and ReLU activation help improve generalization and model predictability.Additionally,examining model decisions through LIME enables us to identify which features are crucial for making smart grid operational decisions in real time.The research offers a practical and flexible approach for detecting FDI attacks,improving the security of cyber-physical systems,and facilitating the deployment of AI in energy infrastructure.展开更多
This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the meas...This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the measurement residuals of partial sensors due to limited attack resources,is proposed to maximally degrade system estimation performance.The attack stealthiness condition is given,and then the estimation error covariance in compromised state is derived to quantify the system performance under attack.The optimal attack strategy is obtained by solving several convex optimization problems which maximize the trace of the compromised estimation error covariance subject to the stealthiness condition.Moreover,due to the constraint of attack resources,the selection principle of the attacked sensor is provided to determine which sensor is attacked so as to hold the most impact on system performance.Finally,simulation results are presented to verify the theoretical analysis.展开更多
Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false d...Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals.For quantified false data injection attacks,this paper establishes an effective defense framework from the energy conversion perspective.Then,we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks.The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection.Moreover,with the disturbance attenuation technique,the burden of control system design is simplified because there is no need to design an attack observer.In addition,this secure control method is simple to implement because it avoids complicated mathematical operations.The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor.展开更多
The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defe...The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defense control scheme based on interval observer detection is proposed in this paper to protect smart grids.The proposed active defense highlights the integration of detection and defense against FDIAs in smart girds.First,a dynamic physical grid model under FDIAs is modeled,in which model uncertainty and parameter uncertainty are taken into account.Then,an interval observer-based detection method against FDIAs is proposed,where a detection criteria using interval residual is put forward.Corresponding to the detection results,the resilient defense controller is triggered to defense the FDIAs if the system states are affected by FDIAs.Linear matrix inequality(LMI)approach is applied to design the resilient controller with H_(∞)performance.The system with the resilient defense controller can be robust to FDIAs and the gain of the resilient controller has a certain gain margin.Our active resilient defense approach can be built in real time and show accurate and quick respond to the injected FDIAs.The effectiveness of the proposed defense scheme is verified by the simulation results on an IEEE 30-bus grid system.展开更多
The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to rese...The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to research the exponential synchronization of MJNNs under false data injection attacks(FDIAs)since it can alleviate the impact of the FDIAs on the performance of the system by adjusting the sampling periods.A multi-delay error system model is established through the input-delay approach.To reduce the conservatism of the results,a sampling-periodprobability-dependent looped Lyapunov functional is constructed.In light of some less conservative integral inequalities,a synchronization criterion is derived,and an algorithm is provided that can be solved for determining the controller gain.Finally,a numerical simulation is presented to confirm the efficiency of the proposed method.展开更多
With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits ...With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations.展开更多
The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation...The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation by IoT gadget developers.Cyber-attackers take advantage of such gadgets’vulnerabilities through various attacks such as injection and Distributed Denial of Service(DDoS)attacks.In this background,Intrusion Detection(ID)is the only way to identify the attacks and mitigate their damage.The recent advancements in Machine Learning(ML)and Deep Learning(DL)models are useful in effectively classifying cyber-attacks.The current research paper introduces a new Coot Optimization Algorithm with a Deep Learning-based False Data Injection Attack Recognition(COADL-FDIAR)model for the IoT environment.The presented COADL-FDIAR technique aims to identify false data injection attacks in the IoT environment.To accomplish this,the COADL-FDIAR model initially preprocesses the input data and selects the features with the help of the Chi-square test.To detect and classify false data injection attacks,the Stacked Long Short-Term Memory(SLSTM)model is exploited in this study.Finally,the COA algorithm effectively adjusts the SLTSM model’s hyperparameters effectively and accomplishes a superior recognition efficiency.The proposed COADL-FDIAR model was experimentally validated using a standard dataset,and the outcomes were scrutinized under distinct aspects.The comparative analysis results assured the superior performance of the proposed COADL-FDIAR model over other recent approaches with a maximum accuracy of 98.84%.展开更多
Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by de...Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by designing defense strategy on the basis of identifying attack strategy,maintaining stable operation of NCSs.To solve this attack-defense game problem,this letter investigates optimal secure control of NCSs under FDIAs.First,for the alterations of energy caused by false data,a novel attack-defense game model is constructed,which considers the changes of energy caused by the actions of the defender and attacker in the forward and feedback channels.展开更多
False data injection(FDI)attacks pose a critical threat to power system security by crafting sophisticated attack vectors that evade conventional bad data detection methods.These malicious manipulations corrupt state ...False data injection(FDI)attacks pose a critical threat to power system security by crafting sophisticated attack vectors that evade conventional bad data detection methods.These malicious manipulations corrupt state estimation results,potentially leading to severe operational failures in control centers.To combat this challenge,we present an innovative Generative Adversarial Network framework with Spatial Feature-based Temporal Convolutional Network as the discriminator and Random Forest-Graph Convolutional Generator hybrid model as the generator.The proposed approach leverages a Random Forest-enhanced Graph Convolutional Generator to reconstruct attack-free measurements while employing a Spatial-Temporal Feature-based Discriminator to improve detection accuracy.Through adversarial training,these components synergistically improve both attack detection sensitivity and data reconstruction accuracy.Comprehensive numerical simulations on IEEE 14-bus and 118-bus test systems validate the model's superior performance,demonstrating significant improvements in both detection robustness and operational resilience against FDI attacks.展开更多
Meter encoding,as a side-effect-free scheme,has been proposed to detect false data injection(FDI)attacks without significantly affecting the operation of power systems.However,existing meter encoding schemes either re...Meter encoding,as a side-effect-free scheme,has been proposed to detect false data injection(FDI)attacks without significantly affecting the operation of power systems.However,existing meter encoding schemes either require encoding lots of measurements from different buses to protect a substantial proportion of a power system or are unhidden from alert attackers.To address these issues,this paper proposes a smart inverter enabled meter encoding scheme for detecting FDI attacks in distribution system state estimation.The proposed scheme only encodes the measurements from the existing programmable smart inverters.Meanwhile,this scheme can protect all the downstream buses from the encoded inverter bus.Compared with existing schemes,the proposed scheme encodes fewer meters when protecting the same number of buses,which decreases the encoding cost.In addition,by following the physical power flow laws,the proposed scheme is hidden from alert attackers who can implement the state estimation-based bad data detection(BDD).Simulation results from the IEEE 69-bus distribution system demonstrate that the proposed scheme can mislead the attacker's state estimation on all the downstream buses from the encoded bus without arousing the attacker's suspicion.FDI attacks that are constructed based on the misled estimated state are very likely to trigger the defender's BDD alarm.展开更多
In this paper,we address a cross-layer resilient control issue for a kind of multi-spacecraft system(MSS)under attack.Attackers with bad intentions use the false data injection(FDI)attack to prevent the MSS from reach...In this paper,we address a cross-layer resilient control issue for a kind of multi-spacecraft system(MSS)under attack.Attackers with bad intentions use the false data injection(FDI)attack to prevent the MSS from reaching the goal of consensus.In order to ensure the effectiveness of the control,the embedded defender in MSS preliminarily allocates the defense resources among spacecrafts.Then,the attacker selects its target spacecrafts to mount FDI attack to achieve the maximum damage.In physical layer,a Nash equilibrium(NE)control strategy is proposed for MSS to quantify system performance under the effect of attacks by solving a game problem.In cyber layer,a fuzzy Stackelberg game framework is used to examine the rivalry process between the attacker and defender.The strategies of both attacker and defender are given based on the analysis of physical layer and cyber layer.Finally,a simulation example is used to test the viability of the proposed cross layer fuzzy game algorithm.展开更多
As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electri...As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electrical components and computinginformation in cyber space,smart grid is vulnerable to malicious attacks,especially for a type of attacks named false data injection attacks(FDIAs).FDIAs are capable of tampering meter measurements and affecting the results of state estimation stealthily,which severely threat the security of smart grid.Due to the significantinfluence of FDIAs on smart grid,the research related to FDIAs has received considerable attention over the past decade.This paper aims to summarize recent advances in FDIAs against smart grid state estimation,especially from the aspects of background materials,construction methods,detection and defense strategies.Moreover,future research directions are discussed and outlined by analyzing existing results.It is expected that through the review of FDIAs,the vulnerabilities of smart grid to malicious attacks can be further revealed and more attention can be devoted to the detection and defense of cyber-physical attacks against smart grid.展开更多
It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability...It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability of those attacks using standard bad data detection techniques,which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter(UKF) in conjunction with a weighted least square(WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.展开更多
State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure...State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.展开更多
This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness an...This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness and effects on system performance are analyzed under three cases of system knowledge held by an attacker and a defender.Firstly,it is derived that the proposed attack scheme is stealthy for a residual-based detector when the attacker and the defender hold the same accurate system knowledge.Secondly,it is proven that the proposed attack scheme is still stealthy even if the defender actively modifies the Kalman filter gain so as to make it different from that of the attacker.Thirdly,the stealthiness condition of the proposed attack scheme based on an inaccurate model is given.Furthermore,for each case,the instability conditions of the closed-loop system under attack are derived.Finally,simulation results are provided to test the proposed attack scheme.展开更多
This paper addresses false data injection, which is one of the most significant security challenges in smart grids. Having an accurately estimated state is of great importance for maintaining a stable running conditio...This paper addresses false data injection, which is one of the most significant security challenges in smart grids. Having an accurately estimated state is of great importance for maintaining a stable running condition of smart grids. To preserve the accuracy of the estimated state, bad data detection(BDD) mechanisms are utilized to remove erroneous measurements due to meter failures or outside attacks. In this paper we use a graph-theoretic formulation for false data injection attacks in smart grids and propose defense mechanisms to mitigate this type of attacks. To this end, we discuss characteristics of a typical smart grid graph such as planarity. Then we propose three different approaches to find optimal protected meters set: a fast and efficient heuristic algorithm that works well in practice, an approximation algorithm that provides guarantee for the quality of the protected set, and an exact algorithm that finds the optimal solution. Our extensive simulation results show that our algorithms outperform similar existing solutions in terms of different performance metrics.展开更多
基金supported by National Key Research and Development Plan of China(No.2022YFB3103304).
文摘False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
基金the Deanship of Scientific Research and Libraries in Princess Nourah bint Abdulrahman University for funding this research work through the Research Group project,Grant No.(RG-1445-0064).
文摘Although digital changes in power systems have added more ways to monitor and control them,these changes have also led to new cyber-attack risks,mainly from False Data Injection(FDI)attacks.If this happens,the sensors and operations are compromised,which can lead to big problems,disruptions,failures and blackouts.In response to this challenge,this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory(Bi-LSTM)networks and employs explanatory methods from Artificial Intelligence(AI).Not only does the suggested architecture detect potential fraud with high accuracy,but it also makes its decisions transparent,enabling operators to take appropriate action.Themethod developed here utilizesmodel-free,interpretable tools to identify essential input elements,thereby making predictions more understandable and usable.Enhancing detection performance is made possible by correcting class imbalance using Synthetic Minority Over-sampling Technique(SMOTE)-based data balancing.Benchmark power system data confirms that the model functions correctly through detailed experiments.Experimental results showed that Bi-LSTM+Explainable AI(XAI)achieved an average accuracy of 94%,surpassing XGBoost(89%)and Bagging(84%),while ensuring explainability and a high level of robustness across various operating scenarios.By conducting an ablation study,we find that bidirectional recursive modeling and ReLU activation help improve generalization and model predictability.Additionally,examining model decisions through LIME enables us to identify which features are crucial for making smart grid operational decisions in real time.The research offers a practical and flexible approach for detecting FDI attacks,improving the security of cyber-physical systems,and facilitating the deployment of AI in energy infrastructure.
基金supported by the National Natural Science Foundation of China(61925303,62173034,62088101,U20B2073,62173002)the National Key Research and Development Program of China(2021YFB1714800)Beijing Natural Science Foundation(4222045)。
文摘This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the measurement residuals of partial sensors due to limited attack resources,is proposed to maximally degrade system estimation performance.The attack stealthiness condition is given,and then the estimation error covariance in compromised state is derived to quantify the system performance under attack.The optimal attack strategy is obtained by solving several convex optimization problems which maximize the trace of the compromised estimation error covariance subject to the stealthiness condition.Moreover,due to the constraint of attack resources,the selection principle of the attacked sensor is provided to determine which sensor is attacked so as to hold the most impact on system performance.Finally,simulation results are presented to verify the theoretical analysis.
基金supported in part by the National Science Foundation of China(61873103,61433006)。
文摘Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals.For quantified false data injection attacks,this paper establishes an effective defense framework from the energy conversion perspective.Then,we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks.The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection.Moreover,with the disturbance attenuation technique,the burden of control system design is simplified because there is no need to design an attack observer.In addition,this secure control method is simple to implement because it avoids complicated mathematical operations.The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor.
基金supported by the National Nature Science Foundation of China(Nos.62103357,62203376)the Science and Technology Plan of Hebei Education Department(No.QN2021139)+1 种基金the Nature Science Foundation of Hebei Province(Nos.F2021203043,F2022203074)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202203).
文摘The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defense control scheme based on interval observer detection is proposed in this paper to protect smart grids.The proposed active defense highlights the integration of detection and defense against FDIAs in smart girds.First,a dynamic physical grid model under FDIAs is modeled,in which model uncertainty and parameter uncertainty are taken into account.Then,an interval observer-based detection method against FDIAs is proposed,where a detection criteria using interval residual is put forward.Corresponding to the detection results,the resilient defense controller is triggered to defense the FDIAs if the system states are affected by FDIAs.Linear matrix inequality(LMI)approach is applied to design the resilient controller with H_(∞)performance.The system with the resilient defense controller can be robust to FDIAs and the gain of the resilient controller has a certain gain margin.Our active resilient defense approach can be built in real time and show accurate and quick respond to the injected FDIAs.The effectiveness of the proposed defense scheme is verified by the simulation results on an IEEE 30-bus grid system.
基金the NNSF of China under Grants 61973199,62003794,62173214the Shandong Provincial NSF ZR2020QF050,ZR2021MF003。
文摘The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to research the exponential synchronization of MJNNs under false data injection attacks(FDIAs)since it can alleviate the impact of the FDIAs on the performance of the system by adjusting the sampling periods.A multi-delay error system model is established through the input-delay approach.To reduce the conservatism of the results,a sampling-periodprobability-dependent looped Lyapunov functional is constructed.In light of some less conservative integral inequalities,a synchronization criterion is derived,and an algorithm is provided that can be solved for determining the controller gain.Finally,a numerical simulation is presented to confirm the efficiency of the proposed method.
基金This work was supported in part by the National Natural Science Foundation of China(62206109)the Fundamental Research Funds for the Central Universities(21620346)。
文摘With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations.
基金This research was supported by the Universiti Sains Malaysia(USM)and the ministry of Higher Education Malaysia through Fundamental Research GrantScheme(FRGS-Grant No:FRGS/1/2020/TK0/USM/02/1).
文摘The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation by IoT gadget developers.Cyber-attackers take advantage of such gadgets’vulnerabilities through various attacks such as injection and Distributed Denial of Service(DDoS)attacks.In this background,Intrusion Detection(ID)is the only way to identify the attacks and mitigate their damage.The recent advancements in Machine Learning(ML)and Deep Learning(DL)models are useful in effectively classifying cyber-attacks.The current research paper introduces a new Coot Optimization Algorithm with a Deep Learning-based False Data Injection Attack Recognition(COADL-FDIAR)model for the IoT environment.The presented COADL-FDIAR technique aims to identify false data injection attacks in the IoT environment.To accomplish this,the COADL-FDIAR model initially preprocesses the input data and selects the features with the help of the Chi-square test.To detect and classify false data injection attacks,the Stacked Long Short-Term Memory(SLSTM)model is exploited in this study.Finally,the COA algorithm effectively adjusts the SLTSM model’s hyperparameters effectively and accomplishes a superior recognition efficiency.The proposed COADL-FDIAR model was experimentally validated using a standard dataset,and the outcomes were scrutinized under distinct aspects.The comparative analysis results assured the superior performance of the proposed COADL-FDIAR model over other recent approaches with a maximum accuracy of 98.84%.
基金supported in part by the National Science Foundation of China(62373240,62273224,U24A20259).
文摘Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by designing defense strategy on the basis of identifying attack strategy,maintaining stable operation of NCSs.To solve this attack-defense game problem,this letter investigates optimal secure control of NCSs under FDIAs.First,for the alterations of energy caused by false data,a novel attack-defense game model is constructed,which considers the changes of energy caused by the actions of the defender and attacker in the forward and feedback channels.
基金supported by the National Nature Science Foundation of China under 62103357Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution NetworkNanjing Institute of Technology under No.XTCX202203.
文摘False data injection(FDI)attacks pose a critical threat to power system security by crafting sophisticated attack vectors that evade conventional bad data detection methods.These malicious manipulations corrupt state estimation results,potentially leading to severe operational failures in control centers.To combat this challenge,we present an innovative Generative Adversarial Network framework with Spatial Feature-based Temporal Convolutional Network as the discriminator and Random Forest-Graph Convolutional Generator hybrid model as the generator.The proposed approach leverages a Random Forest-enhanced Graph Convolutional Generator to reconstruct attack-free measurements while employing a Spatial-Temporal Feature-based Discriminator to improve detection accuracy.Through adversarial training,these components synergistically improve both attack detection sensitivity and data reconstruction accuracy.Comprehensive numerical simulations on IEEE 14-bus and 118-bus test systems validate the model's superior performance,demonstrating significant improvements in both detection robustness and operational resilience against FDI attacks.
文摘Meter encoding,as a side-effect-free scheme,has been proposed to detect false data injection(FDI)attacks without significantly affecting the operation of power systems.However,existing meter encoding schemes either require encoding lots of measurements from different buses to protect a substantial proportion of a power system or are unhidden from alert attackers.To address these issues,this paper proposes a smart inverter enabled meter encoding scheme for detecting FDI attacks in distribution system state estimation.The proposed scheme only encodes the measurements from the existing programmable smart inverters.Meanwhile,this scheme can protect all the downstream buses from the encoded inverter bus.Compared with existing schemes,the proposed scheme encodes fewer meters when protecting the same number of buses,which decreases the encoding cost.In addition,by following the physical power flow laws,the proposed scheme is hidden from alert attackers who can implement the state estimation-based bad data detection(BDD).Simulation results from the IEEE 69-bus distribution system demonstrate that the proposed scheme can mislead the attacker's state estimation on all the downstream buses from the encoded bus without arousing the attacker's suspicion.FDI attacks that are constructed based on the misled estimated state are very likely to trigger the defender's BDD alarm.
基金supported by the Natural Science Foundation of China(62073268,62122063,62203360)the Young Star of Science and Technology in Shaanxi Province(2020KJXX-078).
文摘In this paper,we address a cross-layer resilient control issue for a kind of multi-spacecraft system(MSS)under attack.Attackers with bad intentions use the false data injection(FDI)attack to prevent the MSS from reaching the goal of consensus.In order to ensure the effectiveness of the control,the embedded defender in MSS preliminarily allocates the defense resources among spacecrafts.Then,the attacker selects its target spacecrafts to mount FDI attack to achieve the maximum damage.In physical layer,a Nash equilibrium(NE)control strategy is proposed for MSS to quantify system performance under the effect of attacks by solving a game problem.In cyber layer,a fuzzy Stackelberg game framework is used to examine the rivalry process between the attacker and defender.The strategies of both attacker and defender are given based on the analysis of physical layer and cyber layer.Finally,a simulation example is used to test the viability of the proposed cross layer fuzzy game algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.61822309,61773310&U1736205)
文摘As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electrical components and computinginformation in cyber space,smart grid is vulnerable to malicious attacks,especially for a type of attacks named false data injection attacks(FDIAs).FDIAs are capable of tampering meter measurements and affecting the results of state estimation stealthily,which severely threat the security of smart grid.Due to the significantinfluence of FDIAs on smart grid,the research related to FDIAs has received considerable attention over the past decade.This paper aims to summarize recent advances in FDIAs against smart grid state estimation,especially from the aspects of background materials,construction methods,detection and defense strategies.Moreover,future research directions are discussed and outlined by analyzing existing results.It is expected that through the review of FDIAs,the vulnerabilities of smart grid to malicious attacks can be further revealed and more attention can be devoted to the detection and defense of cyber-physical attacks against smart grid.
基金supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia and Schneider Electric DMS NS,Serbia(No.Ⅲ-42004)
文摘It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability of those attacks using standard bad data detection techniques,which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter(UKF) in conjunction with a weighted least square(WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.
基金supported in part by the Key-Area Research and Development Program of Guangdong Province under Grant 2020B010166004in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2020A1515111100+1 种基金in part by the National Natural Science Foundation of China under Grant 52207106in part by the Open Fund of State Key Laboratory of Operation and Control of Renewable Energy&Storage Systems(China Electric Power Research Institute)under Grant KJ80-21-001.
文摘State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173002, 61925303, 62088101, U20B2073, and 61720106011the Beijing Natural Science Foundation under Grant No. 4222045
文摘This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness and effects on system performance are analyzed under three cases of system knowledge held by an attacker and a defender.Firstly,it is derived that the proposed attack scheme is stealthy for a residual-based detector when the attacker and the defender hold the same accurate system knowledge.Secondly,it is proven that the proposed attack scheme is still stealthy even if the defender actively modifies the Kalman filter gain so as to make it different from that of the attacker.Thirdly,the stealthiness condition of the proposed attack scheme based on an inaccurate model is given.Furthermore,for each case,the instability conditions of the closed-loop system under attack are derived.Finally,simulation results are provided to test the proposed attack scheme.
文摘This paper addresses false data injection, which is one of the most significant security challenges in smart grids. Having an accurately estimated state is of great importance for maintaining a stable running condition of smart grids. To preserve the accuracy of the estimated state, bad data detection(BDD) mechanisms are utilized to remove erroneous measurements due to meter failures or outside attacks. In this paper we use a graph-theoretic formulation for false data injection attacks in smart grids and propose defense mechanisms to mitigate this type of attacks. To this end, we discuss characteristics of a typical smart grid graph such as planarity. Then we propose three different approaches to find optimal protected meters set: a fast and efficient heuristic algorithm that works well in practice, an approximation algorithm that provides guarantee for the quality of the protected set, and an exact algorithm that finds the optimal solution. Our extensive simulation results show that our algorithms outperform similar existing solutions in terms of different performance metrics.