The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.H...The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.However,the adverse effects of false data injection(FDI)attacks on the performance of LLMs cannot be overlooked.Therefore,we propose an FDI attack detection and LLM-assisted resource allocation algorithm for 6G edge intelligenceempowered distribution power grids.First,we formulate a resource allocation optimization problem.The objective is to minimize the weighted sum of the global loss function and total LLM fine-tuning delay under constraints of long-term privacy entropy and energy consumption.Then,we decouple it based on virtual queues.We utilize an LLM-assisted deep Q network(DQN)to learn the resource allocation strategy and design an FDI attack detection mechanism to ensure that fine-tuning remains on the correct path.Simulations demonstrate that the proposed algorithm has excellent performance in convergence,delay,and security.展开更多
The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defe...The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defense control scheme based on interval observer detection is proposed in this paper to protect smart grids.The proposed active defense highlights the integration of detection and defense against FDIAs in smart girds.First,a dynamic physical grid model under FDIAs is modeled,in which model uncertainty and parameter uncertainty are taken into account.Then,an interval observer-based detection method against FDIAs is proposed,where a detection criteria using interval residual is put forward.Corresponding to the detection results,the resilient defense controller is triggered to defense the FDIAs if the system states are affected by FDIAs.Linear matrix inequality(LMI)approach is applied to design the resilient controller with H_(∞)performance.The system with the resilient defense controller can be robust to FDIAs and the gain of the resilient controller has a certain gain margin.Our active resilient defense approach can be built in real time and show accurate and quick respond to the injected FDIAs.The effectiveness of the proposed defense scheme is verified by the simulation results on an IEEE 30-bus grid system.展开更多
智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为...智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为当前研究的重要问题。该文首先构建考虑FDIA的PLC赋能智慧园区时间同步网络,通过改进卡尔曼滤波修正时间同步误差;其次,以误差最小化为目标,建立站点时间同步问题;最后,提出基于改进深度Q网络的时间同步路由选择算法。所提算法能够根据FDIA概率动态学习时间同步路由选择策略,从而提高对未知状态的泛化能力。仿真验证表明,所提方法不仅能够显著提升FDIA检测的安全性能,同时可有效改善时间同步精度。展开更多
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi...In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink.展开更多
Due to the integration of cyber–physical systems,smart grids have faced the new security risks caused by false data injection attacks(FDIAs).FDIAs can bypass the traditional bad data detection techniques by falsifyin...Due to the integration of cyber–physical systems,smart grids have faced the new security risks caused by false data injection attacks(FDIAs).FDIAs can bypass the traditional bad data detection techniques by falsifying the process of state estimation.For this reason,this paper studies the detection and isolation problem of FDIAs based on the adaptive Kalman filter bank(AKFB)in smart grids.Taking the covert characteristics of FDIAs into account,a novel detection method is proposed based on the designed AKF.Moreover,the adaptive threshold is proposed to solve the detection delay caused by a priori threshold in the current detection methods.Considering the case of multiple attacked sensor nodes,the AKFB-based isolation method is developed.To reduce the number of isolation iterations,a logical decision matrix scheme is designed.Finally,the effectiveness of the proposed detection and isolation method is demonstrated on an IEEE 22-bus smart grids.展开更多
False Data Injection Attack(FDIA)is a typical network attack in power systems,which interferes with the state estimation(SE)process by manipulat-ing power data to influence decision analysis in power systems,thereby af...False Data Injection Attack(FDIA)is a typical network attack in power systems,which interferes with the state estimation(SE)process by manipulat-ing power data to influence decision analysis in power systems,thereby affect-ing the normal operation of the Smart Grid.This paper presents a power FDIA detection method based on long time-series prediction.The method employs an improved Informer model built upon the Transformer architecture,optimizing the model structure and introducing novel attention mechanisms to enhance compu-tational efficiency,speeding up model training and data prediction.Simulation experiments on the IEEE-14 node system are conducted,comparing the proposed method with detection methods utilizing other deep learning algorithms such as Transformer.The results validate the effectiveness of the proposed approach,accu-rately detecting tampered attack data and preventing losses caused by erroneous state estimation in power systems.展开更多
It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability...It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability of those attacks using standard bad data detection techniques,which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter(UKF) in conjunction with a weighted least square(WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.展开更多
As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electri...As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electrical components and computinginformation in cyber space,smart grid is vulnerable to malicious attacks,especially for a type of attacks named false data injection attacks(FDIAs).FDIAs are capable of tampering meter measurements and affecting the results of state estimation stealthily,which severely threat the security of smart grid.Due to the significantinfluence of FDIAs on smart grid,the research related to FDIAs has received considerable attention over the past decade.This paper aims to summarize recent advances in FDIAs against smart grid state estimation,especially from the aspects of background materials,construction methods,detection and defense strategies.Moreover,future research directions are discussed and outlined by analyzing existing results.It is expected that through the review of FDIAs,the vulnerabilities of smart grid to malicious attacks can be further revealed and more attention can be devoted to the detection and defense of cyber-physical attacks against smart grid.展开更多
State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure...State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.展开更多
Accurate state estimation is critical to wide-area situational awareness of smart grid.However,recent research found that power system state estimators are vulnerable to a new type of cyber-attack,called false data in...Accurate state estimation is critical to wide-area situational awareness of smart grid.However,recent research found that power system state estimators are vulnerable to a new type of cyber-attack,called false data injection attack(FDIA).In order to ensure the security of power system operation and control,a hybrid FDIA detection mechanism utilizing temporal correlation is proposed.The proposed mechanism combines Variational Mode Decomposition(VMD)technology and machine learning.For the purpose of identifying the features of FDIA,VMD is used to decompose the system state time series into an ensemble of components with different frequencies.Furthermore,due to the lack of online model updating ability in a traditional extreme learning machine,an OS-extreme learning machine(OSELM)which has sequential learning ability is used as a detector for identifying FDIA.The proposed detection mechanism is evaluated on the IEEE-14 bus system using real load data from an independent system operator in New York.Apart from detection accuracy,the impact of attack intensity and environment noise on the performance of the proposed method are tested.The simulation results demonstrate the efficiency and robustness of our method.展开更多
电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先...电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。展开更多
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant Number 52094021N010(5400-202199534A-0-5-ZN).
文摘The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.However,the adverse effects of false data injection(FDI)attacks on the performance of LLMs cannot be overlooked.Therefore,we propose an FDI attack detection and LLM-assisted resource allocation algorithm for 6G edge intelligenceempowered distribution power grids.First,we formulate a resource allocation optimization problem.The objective is to minimize the weighted sum of the global loss function and total LLM fine-tuning delay under constraints of long-term privacy entropy and energy consumption.Then,we decouple it based on virtual queues.We utilize an LLM-assisted deep Q network(DQN)to learn the resource allocation strategy and design an FDI attack detection mechanism to ensure that fine-tuning remains on the correct path.Simulations demonstrate that the proposed algorithm has excellent performance in convergence,delay,and security.
基金supported by the National Nature Science Foundation of China(Nos.62103357,62203376)the Science and Technology Plan of Hebei Education Department(No.QN2021139)+1 种基金the Nature Science Foundation of Hebei Province(Nos.F2021203043,F2022203074)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202203).
文摘The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defense control scheme based on interval observer detection is proposed in this paper to protect smart grids.The proposed active defense highlights the integration of detection and defense against FDIAs in smart girds.First,a dynamic physical grid model under FDIAs is modeled,in which model uncertainty and parameter uncertainty are taken into account.Then,an interval observer-based detection method against FDIAs is proposed,where a detection criteria using interval residual is put forward.Corresponding to the detection results,the resilient defense controller is triggered to defense the FDIAs if the system states are affected by FDIAs.Linear matrix inequality(LMI)approach is applied to design the resilient controller with H_(∞)performance.The system with the resilient defense controller can be robust to FDIAs and the gain of the resilient controller has a certain gain margin.Our active resilient defense approach can be built in real time and show accurate and quick respond to the injected FDIAs.The effectiveness of the proposed defense scheme is verified by the simulation results on an IEEE 30-bus grid system.
文摘智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为当前研究的重要问题。该文首先构建考虑FDIA的PLC赋能智慧园区时间同步网络,通过改进卡尔曼滤波修正时间同步误差;其次,以误差最小化为目标,建立站点时间同步问题;最后,提出基于改进深度Q网络的时间同步路由选择算法。所提算法能够根据FDIA概率动态学习时间同步路由选择策略,从而提高对未知状态的泛化能力。仿真验证表明,所提方法不仅能够显著提升FDIA检测的安全性能,同时可有效改善时间同步精度。
基金supported in part by the National Natural Science Foundation of China(No.61973078)in part by the Natural Science Foundation of Jiangsu Province of China(No.BK20231416)in part by the Zhishan Youth Scholar Program from Southeast University(No.2242022R40042)。
文摘In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink.
基金the National Nature Science Foundation of China under 61873228 and 62103357the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under XTCX202203.
文摘Due to the integration of cyber–physical systems,smart grids have faced the new security risks caused by false data injection attacks(FDIAs).FDIAs can bypass the traditional bad data detection techniques by falsifying the process of state estimation.For this reason,this paper studies the detection and isolation problem of FDIAs based on the adaptive Kalman filter bank(AKFB)in smart grids.Taking the covert characteristics of FDIAs into account,a novel detection method is proposed based on the designed AKF.Moreover,the adaptive threshold is proposed to solve the detection delay caused by a priori threshold in the current detection methods.Considering the case of multiple attacked sensor nodes,the AKFB-based isolation method is developed.To reduce the number of isolation iterations,a logical decision matrix scheme is designed.Finally,the effectiveness of the proposed detection and isolation method is demonstrated on an IEEE 22-bus smart grids.
基金supported by Shanghai Natural Science Foundation,No.20ZR1455900Science and Technology Project of State Grid ShanghaiMunicipal Electric Power Company,No.52094022003R.
文摘False Data Injection Attack(FDIA)is a typical network attack in power systems,which interferes with the state estimation(SE)process by manipulat-ing power data to influence decision analysis in power systems,thereby affect-ing the normal operation of the Smart Grid.This paper presents a power FDIA detection method based on long time-series prediction.The method employs an improved Informer model built upon the Transformer architecture,optimizing the model structure and introducing novel attention mechanisms to enhance compu-tational efficiency,speeding up model training and data prediction.Simulation experiments on the IEEE-14 node system are conducted,comparing the proposed method with detection methods utilizing other deep learning algorithms such as Transformer.The results validate the effectiveness of the proposed approach,accu-rately detecting tampered attack data and preventing losses caused by erroneous state estimation in power systems.
基金supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia and Schneider Electric DMS NS,Serbia(No.Ⅲ-42004)
文摘It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability of those attacks using standard bad data detection techniques,which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter(UKF) in conjunction with a weighted least square(WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.
基金supported by the National Natural Science Foundation of China(Grant Nos.61822309,61773310&U1736205)
文摘As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electrical components and computinginformation in cyber space,smart grid is vulnerable to malicious attacks,especially for a type of attacks named false data injection attacks(FDIAs).FDIAs are capable of tampering meter measurements and affecting the results of state estimation stealthily,which severely threat the security of smart grid.Due to the significantinfluence of FDIAs on smart grid,the research related to FDIAs has received considerable attention over the past decade.This paper aims to summarize recent advances in FDIAs against smart grid state estimation,especially from the aspects of background materials,construction methods,detection and defense strategies.Moreover,future research directions are discussed and outlined by analyzing existing results.It is expected that through the review of FDIAs,the vulnerabilities of smart grid to malicious attacks can be further revealed and more attention can be devoted to the detection and defense of cyber-physical attacks against smart grid.
基金supported in part by the Key-Area Research and Development Program of Guangdong Province under Grant 2020B010166004in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2020A1515111100+1 种基金in part by the National Natural Science Foundation of China under Grant 52207106in part by the Open Fund of State Key Laboratory of Operation and Control of Renewable Energy&Storage Systems(China Electric Power Research Institute)under Grant KJ80-21-001.
文摘State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.
基金supported by the National Natural Science Foundation of China under Grants.61573300,61833008Natural Science Foundation of Jiangsu Province under Grant.BK20171445Key R&D Program of Jiangsu Province under Grant.BE2016184.
文摘Accurate state estimation is critical to wide-area situational awareness of smart grid.However,recent research found that power system state estimators are vulnerable to a new type of cyber-attack,called false data injection attack(FDIA).In order to ensure the security of power system operation and control,a hybrid FDIA detection mechanism utilizing temporal correlation is proposed.The proposed mechanism combines Variational Mode Decomposition(VMD)technology and machine learning.For the purpose of identifying the features of FDIA,VMD is used to decompose the system state time series into an ensemble of components with different frequencies.Furthermore,due to the lack of online model updating ability in a traditional extreme learning machine,an OS-extreme learning machine(OSELM)which has sequential learning ability is used as a detector for identifying FDIA.The proposed detection mechanism is evaluated on the IEEE-14 bus system using real load data from an independent system operator in New York.Apart from detection accuracy,the impact of attack intensity and environment noise on the performance of the proposed method are tested.The simulation results demonstrate the efficiency and robustness of our method.
文摘电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。