期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
FDI Attack Detection and LLM-Assisted Resource Allocation for 6G Edge Intelligence-Empowered Distribution Power Grid
1
作者 Zhang Sunxuan Zhang Hongshuo +3 位作者 Zhou Wen Zhang Ruqi Yao Zijia Zhou Zhenyu 《China Communications》 2025年第7期58-73,共16页
The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.H... The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.However,the adverse effects of false data injection(FDI)attacks on the performance of LLMs cannot be overlooked.Therefore,we propose an FDI attack detection and LLM-assisted resource allocation algorithm for 6G edge intelligenceempowered distribution power grids.First,we formulate a resource allocation optimization problem.The objective is to minimize the weighted sum of the global loss function and total LLM fine-tuning delay under constraints of long-term privacy entropy and energy consumption.Then,we decouple it based on virtual queues.We utilize an LLM-assisted deep Q network(DQN)to learn the resource allocation strategy and design an FDI attack detection mechanism to ensure that fine-tuning remains on the correct path.Simulations demonstrate that the proposed algorithm has excellent performance in convergence,delay,and security. 展开更多
关键词 distribution power grids false data injection(FDI)attack large language model(LLM) resource allocation 6G edge intelligence
在线阅读 下载PDF
Active resilient defense control against false data injection attacks in smart grids
2
作者 Xiaoyuan Luo Lingjie Hou +3 位作者 Xinyu Wang Ruiyang Gao Shuzheng Wang Xinping Guan 《Control Theory and Technology》 EI CSCD 2023年第4期515-529,共15页
The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defe... The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defense control scheme based on interval observer detection is proposed in this paper to protect smart grids.The proposed active defense highlights the integration of detection and defense against FDIAs in smart girds.First,a dynamic physical grid model under FDIAs is modeled,in which model uncertainty and parameter uncertainty are taken into account.Then,an interval observer-based detection method against FDIAs is proposed,where a detection criteria using interval residual is put forward.Corresponding to the detection results,the resilient defense controller is triggered to defense the FDIAs if the system states are affected by FDIAs.Linear matrix inequality(LMI)approach is applied to design the resilient controller with H_(∞)performance.The system with the resilient defense controller can be robust to FDIAs and the gain of the resilient controller has a certain gain margin.Our active resilient defense approach can be built in real time and show accurate and quick respond to the injected FDIAs.The effectiveness of the proposed defense scheme is verified by the simulation results on an IEEE 30-bus grid system. 展开更多
关键词 Active resilient defense attack detection Cyber attacks Cyber-attack detection Cyber grid elements Cyber threat false data injection attack Smart grids security Interval observer
原文传递
基于DACDiff的分布式电源调度控制系统FDIAs防御方法
3
作者 李元诚 孙鹤洋 +2 位作者 张桐 张贺方 杨立群 《信息网络安全》 北大核心 2025年第4期578-586,共9页
随着可再生能源的发展,分布式电源的应用规模持续扩大,其在高效能源利用和绿色环保方面的优势得到了广泛认可。然而,由于系统的分散性、复杂性和不确定性,使分布式电源调控更易受到虚假数据注入攻击(FDIAs)的安全威胁。FDIAs篡改实时量... 随着可再生能源的发展,分布式电源的应用规模持续扩大,其在高效能源利用和绿色环保方面的优势得到了广泛认可。然而,由于系统的分散性、复杂性和不确定性,使分布式电源调控更易受到虚假数据注入攻击(FDIAs)的安全威胁。FDIAs篡改实时量测数据干扰状态估计和调度决策,可能导致电力系统的不稳定、运行失误,甚至引发严重的电力事故。为确保新型电力系统的安全可靠运行,文章提出一种针对分布式电源调控FDIAs的DACDiff防御方法,该模型基于改进的条件扩散模型,采用DACformer作为去噪网络,采用双重注意力机制捕捉时间序列中的依赖性,通过上采样和多尺度设计更好保留数据特征,用高度逼真的生成数据替换受攻击影响的数据,以保证状态估计的连续性和调控指令的正确性。在电力数据集上的仿真实验结果表明,DACDiff模型在数据生成质量和防御能力方面表现优异,能够有效恢复受到FDIAs影响的分布式电源调控系统,提供了更优的安全性与稳定性。 展开更多
关键词 分布式电源调控 虚假数据注入攻击 主动防御 扩散模型 双重注意力机制
在线阅读 下载PDF
数据驱动算法的电力信息物理系统FDIA定位检测 被引量:1
4
作者 席磊 彭典名 +3 位作者 曹伟 陈洪军 白芳岩 王文卓 《中国电机工程学报》 北大核心 2025年第18期7110-7122,I0008,共14页
虚假数据注入攻击严重威胁电力信息物理系统的安全。针对传统攻击检测方法无法高精度识别攻击并快速定位受攻击节点的问题,该文提出一种数据驱动算法的电力信息物理系统虚假数据注入攻击定位检测方法。首先,将核极限学习机与自编码器结... 虚假数据注入攻击严重威胁电力信息物理系统的安全。针对传统攻击检测方法无法高精度识别攻击并快速定位受攻击节点的问题,该文提出一种数据驱动算法的电力信息物理系统虚假数据注入攻击定位检测方法。首先,将核极限学习机与自编码器结合为多层核极限学习机,逐层学习电力量测数据。然后,利用融合Tent映射和黄金正弦策略的哈里斯鹰算法为多层核极限学习机的参数寻优,提升寻优速度和收敛精度。最后,在IEEE-14和IEEE-118节点系统对所提算法进行仿真验证。结果表明,与其他算法相比,所提算法具有更优的检测速度、准确率、精确率、召回率和F1值,可快速精准定位受攻击节点。 展开更多
关键词 虚假数据注入攻击 电力信息物理系统 定位检测 哈里斯鹰优化算法 核极限学习机
原文传递
考虑FDIA的电力线通信赋能智慧园区时间同步方法
5
作者 张孙烜 薛佳朋 +4 位作者 刘昊东 周振宇 陈晓梅 吕磊 黄林 《中国电机工程学报》 北大核心 2025年第14期5443-5455,I0010,共14页
智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为... 智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为当前研究的重要问题。该文首先构建考虑FDIA的PLC赋能智慧园区时间同步网络,通过改进卡尔曼滤波修正时间同步误差;其次,以误差最小化为目标,建立站点时间同步问题;最后,提出基于改进深度Q网络的时间同步路由选择算法。所提算法能够根据FDIA概率动态学习时间同步路由选择策略,从而提高对未知状态的泛化能力。仿真验证表明,所提方法不仅能够显著提升FDIA检测的安全性能,同时可有效改善时间同步精度。 展开更多
关键词 智慧园区 时间同步 虚假数据注入攻击 电力线通信 改进深度Q网络 探索增强
原文传递
基于CCTGAN-OLGBM的电力CPS FDIAs检测方法
6
作者 薄小永 曲朝阳 +1 位作者 董运昌 王达 《计算机仿真》 2025年第6期124-128,202,共6页
电力信息物理系统(CPS)实现了新能源电源与多元负荷的广域互联以及信息流与能量流的动态交互,但亦面临愈加严峻的虚假数据注入攻击(FDIAs)安全威胁。在以上背景下,提出一种基于改进生成对抗网络(CCTGAN)与优化轻量级梯度提升机(OLGBM)... 电力信息物理系统(CPS)实现了新能源电源与多元负荷的广域互联以及信息流与能量流的动态交互,但亦面临愈加严峻的虚假数据注入攻击(FDIAs)安全威胁。在以上背景下,提出一种基于改进生成对抗网络(CCTGAN)与优化轻量级梯度提升机(OLGBM)相结合的FDIAs检测方法。首先改进提出了能够学习表格类样本数据的CCTGAN,然后通过引入焦点损失函数优化设计了OLGBM算法,并在此基础上提出了具备数据增强和攻击检测功能的FDIAs检测方法,最后通过算例分析验证了本文所提方法的有效性。 展开更多
关键词 生成对抗网络 电力信息物理系统 虚假数据注入攻击 攻击检测 数据驱动
在线阅读 下载PDF
基于马尔可夫链的分布式智能电网FDIA检测方法
7
作者 易杨 华文韬 张永朋 《电气自动化》 2025年第5期108-112,共5页
针对当前分布式智能电网虚假数据注入攻击实时检测方法面临估计残差协方差矩阵不满秩的挑战,采用引入预白化技术的检测方法,降低估计残差矢量的维度,确保处理后的残差概率密度函数具备可计算性,优化实时虚假数据注入攻击检测机制。在此... 针对当前分布式智能电网虚假数据注入攻击实时检测方法面临估计残差协方差矩阵不满秩的挑战,采用引入预白化技术的检测方法,降低估计残差矢量的维度,确保处理后的残差概率密度函数具备可计算性,优化实时虚假数据注入攻击检测机制。在此基础上,分析时齐与非时齐马尔科夫链,推导了检测方法的虚警周期及平均检测时延的上限,为检测机制的稳定性和效率提供了理论依据。最后,在IEEE 14节点系统上验证所提方法的有效性。试验结果表明,所提方法在显著延长虚警周期的同时,成功实现了检测时延的大幅缩减,显著增强了智能电网安全防御能力。 展开更多
关键词 虚假数据注入攻击 攻击检测 分布式电网 检测时延 马尔可夫链
在线阅读 下载PDF
Detection and Defense Method Against False Data Injection Attacks for Distributed Load Frequency Control System in Microgrid 被引量:1
8
作者 Zhixun Zhang Jianqiang Hu +3 位作者 Jianquan Lu Jie Yu Jinde Cao Ardak Kashkynbayev 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期913-924,共12页
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi... In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink. 展开更多
关键词 MICROGRID load frequency control false data injection attack bi-directional long short-term memory(BiLSTM)neural network improved whale optimization algorithm(IWOA) detection and defense
原文传递
Detection and isolation of false data injection attack via adaptive Kalman filter bank
9
作者 Xiaoyuan Luo Minggao Zhu +1 位作者 Xinyu Wang Xinping Guan 《Journal of Control and Decision》 EI 2024年第1期60-72,共13页
Due to the integration of cyber–physical systems,smart grids have faced the new security risks caused by false data injection attacks(FDIAs).FDIAs can bypass the traditional bad data detection techniques by falsifyin... Due to the integration of cyber–physical systems,smart grids have faced the new security risks caused by false data injection attacks(FDIAs).FDIAs can bypass the traditional bad data detection techniques by falsifying the process of state estimation.For this reason,this paper studies the detection and isolation problem of FDIAs based on the adaptive Kalman filter bank(AKFB)in smart grids.Taking the covert characteristics of FDIAs into account,a novel detection method is proposed based on the designed AKF.Moreover,the adaptive threshold is proposed to solve the detection delay caused by a priori threshold in the current detection methods.Considering the case of multiple attacked sensor nodes,the AKFB-based isolation method is developed.To reduce the number of isolation iterations,a logical decision matrix scheme is designed.Finally,the effectiveness of the proposed detection and isolation method is demonstrated on an IEEE 22-bus smart grids. 展开更多
关键词 Smart grids false data inject attack detection and isolation Kalman filter bank
原文传递
False Data Injection Attack Detection Method Based on Long Time Series Prediction
10
作者 Chengli Fu Lin Zhou +2 位作者 Siyuan Chen Yi Wu Yong Wang 《国际计算机前沿大会会议论文集》 2024年第2期215-224,共10页
False Data Injection Attack(FDIA)is a typical network attack in power systems,which interferes with the state estimation(SE)process by manipulat-ing power data to influence decision analysis in power systems,thereby af... False Data Injection Attack(FDIA)is a typical network attack in power systems,which interferes with the state estimation(SE)process by manipulat-ing power data to influence decision analysis in power systems,thereby affect-ing the normal operation of the Smart Grid.This paper presents a power FDIA detection method based on long time-series prediction.The method employs an improved Informer model built upon the Transformer architecture,optimizing the model structure and introducing novel attention mechanisms to enhance compu-tational efficiency,speeding up model training and data prediction.Simulation experiments on the IEEE-14 node system are conducted,comparing the proposed method with detection methods utilizing other deep learning algorithms such as Transformer.The results validate the effectiveness of the proposed approach,accu-rately detecting tampered attack data and preventing losses caused by erroneous state estimation in power systems. 展开更多
关键词 false data injection attack detection INFORMER Smart Grid
原文传递
重载群组列车自组织网络系统虚假数据注入攻击检测方法 被引量:1
11
作者 宋宗莹 杨迎泽 +2 位作者 王兴中 于晓泉 李烁 《铁路计算机应用》 2025年第6期40-44,共5页
针对重载群组列车自组织网络系统(简称:自组织网络系统)因其高度互联性面临虚假数据注入攻击的问题,设计了一种基于回声状态网络的虚假数据注入攻击检测方法。通过构建自组织网络系统的信息物理模型,设计相应的协同控制策略,确保列车组... 针对重载群组列车自组织网络系统(简称:自组织网络系统)因其高度互联性面临虚假数据注入攻击的问题,设计了一种基于回声状态网络的虚假数据注入攻击检测方法。通过构建自组织网络系统的信息物理模型,设计相应的协同控制策略,确保列车组间的速度同步与安全间距。仿真实验表明,该方法成功检测出不同情境下的虚假数据注入攻击,为重载群组列车自组织网络系统提供了有效的安全保障,为铁路运输系统智能化发展提供支撑。 展开更多
关键词 协同控制 虚假数据注入攻击 攻击检测 重载群组列车 自组织网络系统
在线阅读 下载PDF
具有网络攻击防御力的DG变流器设计及其分布式控制
12
作者 韦永军 覃秋密 《电源学报》 北大核心 2025年第5期112-120,共9页
为了降低控制系统对通信网络的依赖性,直流微电网DC-MG(DC microgrid)通常采用分布式控制架构,然而由于缺乏全局信息,这种控制方式极易受到网络攻击,使得DC-MG存在较大安全隐患。网络攻击的种类较多,其中虚假数据注入攻击FDIA(false dat... 为了降低控制系统对通信网络的依赖性,直流微电网DC-MG(DC microgrid)通常采用分布式控制架构,然而由于缺乏全局信息,这种控制方式极易受到网络攻击,使得DC-MG存在较大安全隐患。网络攻击的种类较多,其中虚假数据注入攻击FDIA(false data injection attack)占比最高,其危害性也最大。基于此,针对FDIA造成DC-MG运行中断等不稳定问题,提出了1种基于前馈神经网络FNN(feedforward neural network)的DC-MG网络攻击检测与控制方法。该方法首先研究了FDIA造成控制系统不稳定的影响机理,建立了FDIA不稳定影响的数学模型;然后,利用FNN构建了智能估计器来监测DC-MG中分布式电源变换器的输出电流,并根据估计器的输出计算出FDIA的错误数据值;接着,针对错误数据的计算值,引入基于PI控制器的参考跟踪方法,以减少被攻击转换器中的错误数据,此外,所提方法还可消除所有高域不平衡攻击;最后,分别在MATLAB/Simulink和OPAL-RT环境下对所提方法进行了仿真和实验验证,仿真实验结果验证了所提方法的有效性。 展开更多
关键词 直流微网 虚假数据注入攻击 前馈神经网络 网络攻击
在线阅读 下载PDF
Detection of false data injection attacks using unscented Kalman filter 被引量:19
13
作者 Nemanja ZIVKOVI Andrija T.SARI 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2018年第5期847-859,共13页
It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability... It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability of those attacks using standard bad data detection techniques,which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter(UKF) in conjunction with a weighted least square(WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. 展开更多
关键词 State estimation false data injection attack BAD data detection Unscented KALMAN filter
原文传递
False data injection attacks against smart grid state estimation:Construction, detection and defense 被引量:6
14
作者 ZHANG Meng SHEN Chao +4 位作者 HE Ning HAN SiCong LI Qi WANG Qian GUAN XiaoHong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第12期2077-2087,共11页
As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electri... As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electrical components and computinginformation in cyber space,smart grid is vulnerable to malicious attacks,especially for a type of attacks named false data injection attacks(FDIAs).FDIAs are capable of tampering meter measurements and affecting the results of state estimation stealthily,which severely threat the security of smart grid.Due to the significantinfluence of FDIAs on smart grid,the research related to FDIAs has received considerable attention over the past decade.This paper aims to summarize recent advances in FDIAs against smart grid state estimation,especially from the aspects of background materials,construction methods,detection and defense strategies.Moreover,future research directions are discussed and outlined by analyzing existing results.It is expected that through the review of FDIAs,the vulnerabilities of smart grid to malicious attacks can be further revealed and more attention can be devoted to the detection and defense of cyber-physical attacks against smart grid. 展开更多
关键词 false data injection attacks(fdias) state estimation smart grid cyber security
原文传递
Detection of false data injection attacks on power systems using graph edge-conditioned convolutional networks 被引量:12
15
作者 Bairen Chen Q.H.Wu +1 位作者 Mengshi Li Kaishun Xiahou 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第2期1-12,共12页
State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure... State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN. 展开更多
关键词 Power system state estimation(PSSE) Bad data detection(BDD) false data injection attacks(fdia) Graph edge-conditioned convolutional networks(GECCN)
在线阅读 下载PDF
A Hybrid Method for False Data Injection Attack Detection in Smart Grid Based on Variational Mode Decomposition and OS-ELM 被引量:5
16
作者 Chunxia Dou Di Wu +2 位作者 Dong Yue Bao Jin Shiyun Xu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第6期1697-1707,共11页
Accurate state estimation is critical to wide-area situational awareness of smart grid.However,recent research found that power system state estimators are vulnerable to a new type of cyber-attack,called false data in... Accurate state estimation is critical to wide-area situational awareness of smart grid.However,recent research found that power system state estimators are vulnerable to a new type of cyber-attack,called false data injection attack(FDIA).In order to ensure the security of power system operation and control,a hybrid FDIA detection mechanism utilizing temporal correlation is proposed.The proposed mechanism combines Variational Mode Decomposition(VMD)technology and machine learning.For the purpose of identifying the features of FDIA,VMD is used to decompose the system state time series into an ensemble of components with different frequencies.Furthermore,due to the lack of online model updating ability in a traditional extreme learning machine,an OS-extreme learning machine(OSELM)which has sequential learning ability is used as a detector for identifying FDIA.The proposed detection mechanism is evaluated on the IEEE-14 bus system using real load data from an independent system operator in New York.Apart from detection accuracy,the impact of attack intensity and environment noise on the performance of the proposed method are tested.The simulation results demonstrate the efficiency and robustness of our method. 展开更多
关键词 Cyberphysical security false data injection attack detection smart grid state estimation
原文传递
基于改进卷积神经网络的电网虚假数据注入攻击定位方法 被引量:2
17
作者 席磊 程琛 田习龙 《南方电网技术》 北大核心 2025年第1期74-84,共11页
虚假数据注入攻击通过篡改数据采集与监视控制系统采集的数据,进而破坏电力系统的稳定运行。传统虚假数据注入攻击检测方法无法对受攻击位置进行定位,亦或定位精度低。首先提出一种改进海鸥优化卷积神经网络的虚假数据注入攻击检测方法... 虚假数据注入攻击通过篡改数据采集与监视控制系统采集的数据,进而破坏电力系统的稳定运行。传统虚假数据注入攻击检测方法无法对受攻击位置进行定位,亦或定位精度低。首先提出一种改进海鸥优化卷积神经网络的虚假数据注入攻击检测方法,所提方法利用具有共享权值和局部连接特性的卷积神经网络来对高维历史量测数据进行高效的特征提取及分类。然后引入具备平衡全局搜索和局部搜索能力的改进海鸥优化算法进行超参数寻优,以获得虚假数据检测的高度匹配网络结构,进而对不良数据进行检测和定位。最后通过对IEEE-14和IEEE-57节点系统进行大量攻击检测实验,验证了所提方法的有效性,并与其他多种检测方法对比,验证了所提方法的具有更优的分类性能、更高的准确率、精度、召回率和F1值。 展开更多
关键词 虚假数据注入攻击 电力系统 卷积神经网络 海鸥优化 数据检测
在线阅读 下载PDF
基于DDPM-LightGBM的电力CPS多标签不平衡虚假数据注入攻击的检测
18
作者 李俊颉 高莲 +3 位作者 李鹏 张璇 杨家全 苏适 《昆明理工大学学报(自然科学版)》 北大核心 2025年第3期49-57,共9页
针对电力信息-物理系统(Cyber-Physical Systems,CPS)数据不平衡导致的多标签虚假数据注入攻击(False Data Injection Attack,FDIA)检测模型精度不高以及数据量大导致检测时间长的问题,提出了一种基于去噪扩散概率模型(Denoising Diffus... 针对电力信息-物理系统(Cyber-Physical Systems,CPS)数据不平衡导致的多标签虚假数据注入攻击(False Data Injection Attack,FDIA)检测模型精度不高以及数据量大导致检测时间长的问题,提出了一种基于去噪扩散概率模型(Denoising Diffusion Probabilistic Models,DDPM)和轻量梯度提升机(Light Gradient Boosting Machine,LightGBM)的FDIA检测模型.利用DDPM模型来生成数据集中不同标签的少数类攻击数据样本,解决数据集平衡问题,通过余弦相似性来对生成的数据的质量进行评价,从而判断数据生成的质量;采用LightGBM算法,通过直方图技术、梯度单边采样技术和互斥特征捆绑技术简化数据和模型复杂度,提升检测速度和精度.以密西西比州立大学和橡树岭国家实验室提供的电力CPS多标签数据集进行仿真实验,结果表明本模型能够生成高质量的攻击数据,解决数据不平衡问题,明显提升了对多标签FDIA的检测率. 展开更多
关键词 虚假数据注入攻击 去噪扩散概率模型 不平衡数据 轻量梯度提升机
原文传递
电网信息物理系统防御虚假数据注入攻击的三层优化模型
19
作者 李小龙 栗文义 +1 位作者 王娜娜 张艳锋 《电力系统及其自动化学报》 北大核心 2025年第10期32-42,共11页
针对电网信息物理系统(cyber physical system,CPS)遭受虚假数据注入攻击(false data injection attack,FDIA)致使电网发生大规模停电的问题,提出一种电网CPS配置测量保护装置防御FDIA的防御-攻击-防御三层优化模型。上层防御模型考虑... 针对电网信息物理系统(cyber physical system,CPS)遭受虚假数据注入攻击(false data injection attack,FDIA)致使电网发生大规模停电的问题,提出一种电网CPS配置测量保护装置防御FDIA的防御-攻击-防御三层优化模型。上层防御模型考虑通信路由传输约束,辨识测量保护装置的配置位置;中层攻击模型考虑通信路由传输风险,辨识FDIA导致电力系统负荷损失费用最大化注入最坏攻击位置;下层运行模型根据上层和中层辨识出的配置和最坏攻击位置决策调度电力系统安全运行。最后,通过算例仿真分析,结果表明,所提模型能够有效提高通信路由的抗干扰能力,提升电网CPS的韧性。 展开更多
关键词 三层优化模型 虚假数据注入攻击 通信路由 电网信息物理系统 韧性
在线阅读 下载PDF
基于自适应加权混合预测的电网虚假数据注入攻击检测
20
作者 束洪春 杨永银 +2 位作者 赵红芳 许畅 赵学专 《电网技术》 北大核心 2025年第3期1246-1256,I0095,共12页
电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先... 电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。 展开更多
关键词 电力信息物理系统 加权灰色关联分析 无迹卡尔曼滤波 最小二乘支持向量机 虚假数据攻击 攻击检测指数
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部