For the purpose of achieving high-resolution optimal solutions this paper proposes a nodal design variablebased adaptive method for topology optimization of continuum structures. The analysis mesh-independent density ...For the purpose of achieving high-resolution optimal solutions this paper proposes a nodal design variablebased adaptive method for topology optimization of continuum structures. The analysis mesh-independent density field, interpolated by the nodal design variables at a given set of density points, is adaptively refined/coarsened accord- ing to a criterion regarding the gray-scale measure of local regions. New density points are added into the gray regions and redundant ones are removed from the regions occupied by purely solid/void phases for decreasing the number of de- sign variables. A penalization factor adaptivity technique is employed-to prevent premature convergence of the optimiza- tion iterations. Such an adaptive scheme not only improves the structural boundary description quality, but also allows for sufficient further topological evolution of the structural layout in higher adaptivity levels and thus essentially enables high-resolution solutions. Moreover, compared with the case with uniformly and finely distributed density points, the proposed adaptive method can achieve a higher numerical efficiency of the optimization process.展开更多
In this work, fragility analysis is performed to assess two groups of reinforced concrete structures. The first group of structures is composed of buildings that implement three common design practices; namely, fully ...In this work, fragility analysis is performed to assess two groups of reinforced concrete structures. The first group of structures is composed of buildings that implement three common design practices; namely, fully infilled, weak ground story and short columns. The three design practices are applied during the design process of a reinforced concrete building. The structures of the second group vary according to the value of the behavioral factors used to define the seismic forces as specified in design procedures. Most seismic design codes belong to the class of prescriptive procedures where if certain constraints are fulfilled, the structure is considered safe. Prescriptive design procedures express the ability of the structure to absorb energy through inelastic deformation using the behavior factor. The basic objective of this work is to assess both groups of structures with reference to the limit-state probability of exceedance. Thus, four limit state fragility curves are developed on the basis of nonlinear static analysis for both groups of structures. Moreover, the 95% confidence intervals of the fragility curves are also calculated, taking into account two types of random variables that influence structural capacity and seismic demand.展开更多
基金supported by the Key Project of Chinese National Programs for Fundamental Research and Development(2010CB832703)the National Natural Science Foundation of China(11072047 and 91130025)
文摘For the purpose of achieving high-resolution optimal solutions this paper proposes a nodal design variablebased adaptive method for topology optimization of continuum structures. The analysis mesh-independent density field, interpolated by the nodal design variables at a given set of density points, is adaptively refined/coarsened accord- ing to a criterion regarding the gray-scale measure of local regions. New density points are added into the gray regions and redundant ones are removed from the regions occupied by purely solid/void phases for decreasing the number of de- sign variables. A penalization factor adaptivity technique is employed-to prevent premature convergence of the optimiza- tion iterations. Such an adaptive scheme not only improves the structural boundary description quality, but also allows for sufficient further topological evolution of the structural layout in higher adaptivity levels and thus essentially enables high-resolution solutions. Moreover, compared with the case with uniformly and finely distributed density points, the proposed adaptive method can achieve a higher numerical efficiency of the optimization process.
文摘In this work, fragility analysis is performed to assess two groups of reinforced concrete structures. The first group of structures is composed of buildings that implement three common design practices; namely, fully infilled, weak ground story and short columns. The three design practices are applied during the design process of a reinforced concrete building. The structures of the second group vary according to the value of the behavioral factors used to define the seismic forces as specified in design procedures. Most seismic design codes belong to the class of prescriptive procedures where if certain constraints are fulfilled, the structure is considered safe. Prescriptive design procedures express the ability of the structure to absorb energy through inelastic deformation using the behavior factor. The basic objective of this work is to assess both groups of structures with reference to the limit-state probability of exceedance. Thus, four limit state fragility curves are developed on the basis of nonlinear static analysis for both groups of structures. Moreover, the 95% confidence intervals of the fragility curves are also calculated, taking into account two types of random variables that influence structural capacity and seismic demand.