With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation sa...With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.展开更多
Navigation and positioning is an important and challenging problem in many control engineering applications.It provides feedback information to design controllers for systems.In this paper,a bibliographical review on ...Navigation and positioning is an important and challenging problem in many control engineering applications.It provides feedback information to design controllers for systems.In this paper,a bibliographical review on factor graph based navigation and positioning is presented.More specifically,the sensor modeling,the factor graph optimization methods,and the topology factor based cooperative localization are reviewed.The navigation and positioning methods via factor graph are considered and classified.Focuses in the current research of factor graph based navigation and positioning are also discussed with emphasis on its practical application.The limitations of the existing methods,some solutions for future techniques,and recommendations are finally given.展开更多
地磁同步定位与构图(simultaneously localization and mapping,SLAM)无须先验地磁指纹库,即可实现基于智能手机的未知室内环境定位。然而,智能手机地磁SLAM仍受限于惯性定位精度差、因子图优化算法动态适应能力不足及大型场景SLAM应用...地磁同步定位与构图(simultaneously localization and mapping,SLAM)无须先验地磁指纹库,即可实现基于智能手机的未知室内环境定位。然而,智能手机地磁SLAM仍受限于惯性定位精度差、因子图优化算法动态适应能力不足及大型场景SLAM应用系统性能恶化等技术瓶颈。为解决此问题,本文通过设计方差时序递增机制和多源关键数据帧,提出一种面向大型室内场景的地磁SLAM增强优化算法。首先,为了提高惯性定位精度,本文挖掘行人运动过程中呈现出的特征规律构建观测方程,并融合地磁环境信息实现手机端地磁SLAM。然后,针对因子图优化算法动态适应能力不足,采用前端卡尔曼滤波与后端因子图优化相结合的定位框架提升时效性,同时设计方差时序递增机制,动态融合不同定位方法。最后,为了缓解大型场景地磁SLAM性能恶化,在时序维度上扩展关键帧概念和特征表达能力,有效缓解大型场景地磁误匹配问题;结合多源数据设计稳健回环探测与匹配算法,构建关键帧评分机制降低空间密度,从而提高算法效率。试验结果表明,本文实现了大型室内场景闭环情形下的地磁SLAM,相比惯性定位和经典地磁SLAM,本文提出的地磁SLAM增强优化方法的位置均方根误差降低了18%~67%;并且在仅利用标准方法22.6%的关键帧数量的前提下,本文方法仍能保持更高精度、更平滑的定位结果;通过试验探究了参数设置对定位精度和运行时间的影响,明确了地磁图构建首要因素基函数体素网格边长。展开更多
基金supported in part by the Guangxi Power Grid Company’s 2023 Science and Technol-ogy Innovation Project(No.GXKJXM20230169)。
文摘With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.
基金supported by the National Natural Science Foundation of China(No.61873207)the National Science and Technology Major Project,China(No.J2019-I-00210020)+2 种基金the Natural Science Basic Research Program of Shaanxi,China(No.2019JQ-344)the Science and Technology Program of Xi’an City,China(No.2019218314GXRC019CG020-GXYD19.3)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China。
文摘Navigation and positioning is an important and challenging problem in many control engineering applications.It provides feedback information to design controllers for systems.In this paper,a bibliographical review on factor graph based navigation and positioning is presented.More specifically,the sensor modeling,the factor graph optimization methods,and the topology factor based cooperative localization are reviewed.The navigation and positioning methods via factor graph are considered and classified.Focuses in the current research of factor graph based navigation and positioning are also discussed with emphasis on its practical application.The limitations of the existing methods,some solutions for future techniques,and recommendations are finally given.
文摘地磁同步定位与构图(simultaneously localization and mapping,SLAM)无须先验地磁指纹库,即可实现基于智能手机的未知室内环境定位。然而,智能手机地磁SLAM仍受限于惯性定位精度差、因子图优化算法动态适应能力不足及大型场景SLAM应用系统性能恶化等技术瓶颈。为解决此问题,本文通过设计方差时序递增机制和多源关键数据帧,提出一种面向大型室内场景的地磁SLAM增强优化算法。首先,为了提高惯性定位精度,本文挖掘行人运动过程中呈现出的特征规律构建观测方程,并融合地磁环境信息实现手机端地磁SLAM。然后,针对因子图优化算法动态适应能力不足,采用前端卡尔曼滤波与后端因子图优化相结合的定位框架提升时效性,同时设计方差时序递增机制,动态融合不同定位方法。最后,为了缓解大型场景地磁SLAM性能恶化,在时序维度上扩展关键帧概念和特征表达能力,有效缓解大型场景地磁误匹配问题;结合多源数据设计稳健回环探测与匹配算法,构建关键帧评分机制降低空间密度,从而提高算法效率。试验结果表明,本文实现了大型室内场景闭环情形下的地磁SLAM,相比惯性定位和经典地磁SLAM,本文提出的地磁SLAM增强优化方法的位置均方根误差降低了18%~67%;并且在仅利用标准方法22.6%的关键帧数量的前提下,本文方法仍能保持更高精度、更平滑的定位结果;通过试验探究了参数设置对定位精度和运行时间的影响,明确了地磁图构建首要因素基函数体素网格边长。