The dynamics of student engagement and emotional states significantly influence learning outcomes.Positive emotions resulting from successful task completion stand in contrast to negative affective states that arise f...The dynamics of student engagement and emotional states significantly influence learning outcomes.Positive emotions resulting from successful task completion stand in contrast to negative affective states that arise from learning struggles or failures.Effective transitions to engagement occur upon problem resolution,while unresolved issues lead to frustration and subsequent boredom.This study proposes a Convolutional Neural Networks(CNN)based approach utilizing the Multi⁃source Academic Affective Engagement Dataset(MAAED)to categorize facial expressions into boredom,confusion,frustration,and yawning.This method provides an efficient and objective way to assess student engagement by extracting features from facial images.Recognizing and addressing negative affective states,such as confusion and boredom,is fundamental in creating supportive learning environments.Through automated frame extraction and model comparison,this study demonstrates reduced loss values with improving accuracy,showcasing the effectiveness of this method in objectively evaluating student engagement.Monitoring facial engagement with CNN using the MAAED dataset is essential for gaining insights into human behaviour and improving educational experiences.展开更多
Pain is a strong symptom of diseases. Being an involuntary unpleasant feeling, it can be considered a reliable indicator of health issues. Pain has always been expressed verbally, but in some cases, traditional patien...Pain is a strong symptom of diseases. Being an involuntary unpleasant feeling, it can be considered a reliable indicator of health issues. Pain has always been expressed verbally, but in some cases, traditional patient self-reporting is not efficient. On one side, there are patients who have neurological disorders and cannot express themselves accurately, as well as patients who suddenly lose consciousness due to an abrupt faintness. On another side, medical staff working in crowded hospitals need to focus on emergencies and would opt for the automation of the task of looking after hospitalized patients during their entire stay, in order to notice any pain-related emergency. These issues can be tackled with deep learning. Knowing that pain is generally followed by spontaneous facial behaviors, facial expressions can be used as a substitute to verbal reporting, to express pain. In this paper, a convolutional neural network (CNN) model was built and trained to detect pain through patients’ facial expressions, using the UNBC-McMaster Shoulder Pain dataset. First, faces were detected from images using the Haarcascade Frontal Face Detector provided by OpenCV, and preprocessed through gray scaling, histogram equalization, face detection, image cropping, mean filtering, and normalization. Next, preprocessed images were fed into a CNN model which was built based on a modified version of the VGG16 architecture. The model was finally evaluated and fine-tuned in a continuous way based on its accuracy, which reached 92.5%.展开更多
Bodily gestures,facial expressions,and intonations are argued to be notably important features of spoken languagewhich are opposed to written language.Bodily gestures with or without spoken words can influence the cla...Bodily gestures,facial expressions,and intonations are argued to be notably important features of spoken languagewhich are opposed to written language.Bodily gestures with or without spoken words can influence the clarity and density of expres-sion and involvement of listeners.Facial expressions whether or not correspond with exact thought could be"decoded"to influencethe extent of intelligibility of expression.Intonation can always reflect the mutual beliefs concerning the propositional content andstates of consciousness relating to the expression and interpretation.Therefore,these can considerably improve or abate the accura-cy of expression and interpretation of thought.展开更多
TREFACE (Test for Recognition of Facial Expressions with Emotional Conflict) is a computerized model for investigating the emotional factor in executive functions based on the Stroop paradigm, for the recognition of e...TREFACE (Test for Recognition of Facial Expressions with Emotional Conflict) is a computerized model for investigating the emotional factor in executive functions based on the Stroop paradigm, for the recognition of emotional expressions in human faces. To investigate the influence of the emotional component at the cortical level, the electroencephalographic (EEG) recording technique was used to measure the involvement of cortical areas during the execution of certain tasks. Thirty Brazilian native Portuguese-speaking graduate students were evaluated on their anxiety and depression levels and on their well-being at the time of the session. The EEG recording was performed in 19 channels during the execution of the TREFACE test in the 3 stages established by the model-guided training, reading, and recognition—both with congruent conditions, when the image corresponds to the word shown, and incongruent condition, when there is no correspondence. The results showed better performance in the reading stage and in congruent conditions, while greater intensity of cortical activation in the recognition stage and in incongruent conditions. In a complementary way, specific frontal activations were observed: intense theta frequency activation in the left extension representing the frontal recruitment of posterior regions in information processing;also, activation in alpha frequency in the right frontotemporal line, illustrating the executive processing in the control of attention, in addition to the dorsal manifestation of the prefrontal side, for emotional performance. Activations in beta and gamma frequencies were displayed in a more intensely distributed way in the recognition stage. The results of this mapping of cortical activity in our study can help to understand how words and images of faces can be regulated in everyday life and in clinical contexts, suggesting an integrated model that includes the neural bases of the regulation strategy.展开更多
OBJECTIVE: The objective of this study is to summarize and analyze the brain signal patterns of empathy for pain caused by facial expressions of pain utilizing activation likelihood estimation, a meta-analysis method....OBJECTIVE: The objective of this study is to summarize and analyze the brain signal patterns of empathy for pain caused by facial expressions of pain utilizing activation likelihood estimation, a meta-analysis method. DATA SOURCES: Studies concerning the brain mechanism were searched from the Science Citation Index, Science Direct, PubMed, DeepDyve, Cochrane Library, SinoMed, Wanfang, VIP, China National Knowledge Infrastructure, and other databases, such as SpringerLink, AMA, Science Online, Wiley Online, were collected. A time limitation of up to 13 December 2016 was applied to this study. DATA SELECTION: Studies presenting with all of the following criteria were considered for study inclusion: Use of functional magnetic resonance imaging, neutral and pained facial expression stimuli, involvement of adult healthy human participants over 18 years of age, whose empathy ability showed no difference from the healthy adult, a painless basic state, results presented in Talairach or Montreal Neurological Institute coordinates, multiple studies by the same team as long as they used different raw data. OUTCOME MEASURES: Activation likelihood estimation was used to calculate the combined main activated brain regions under the stimulation of pained facial expression. RESULTS: Eight studies were included, containing 178 subjects. Meta-analysis results suggested that the anterior cingulate cortex(BA32), anterior central gyrus(BA44), fusiform gyrus, and insula(BA13) were activated positively as major brain areas under the stimulation of pained facial expression. CONCLUSION: Our study shows that pained facial expression alone, without viewing of painful stimuli, activated brain regions related to pain empathy, further contributing to revealing the brain's mechanisms of pain empathy.展开更多
Accurately recognizing facial expressions is essential for effective social interactions.Non-human primates(NHPs)are widely used in the study of the neural mechanisms underpinning facial expression processing,yet it r...Accurately recognizing facial expressions is essential for effective social interactions.Non-human primates(NHPs)are widely used in the study of the neural mechanisms underpinning facial expression processing,yet it remains unclear how well monkeys can recognize the facial expressions of other species such as humans.In this study,we systematically investigated how monkeys process the facial expressions of conspecifics and humans using eye-tracking technology and sophisticated behavioral tasks,namely the temporal discrimination task(TDT)and face scan task(FST).We found that monkeys showed prolonged subjective time perception in response to Negative facial expressions in monkeys while showing longer reaction time to Negative facial expressions in humans.Monkey faces also reliably induced divergent pupil contraction in response to different expressions,while human faces and scrambled monkey faces did not.Furthermore,viewing patterns in the FST indicated that monkeys only showed bias toward emotional expressions upon observing monkey faces.Finally,masking the eye region marginally decreased the viewing duration for monkey faces but not for human faces.By probing facial expression processing in monkeys,our study demonstrates that monkeys are more sensitive to the facial expressions of conspecifics than those of humans,thus shedding new light on inter-species communication through facial expressions between NHPs and humans.展开更多
The realization of natural and authentic facial expressions in humanoid robots poses a challenging and prominent research domain,encompassing interdisciplinary facets including mechanical design,sensing and actuation ...The realization of natural and authentic facial expressions in humanoid robots poses a challenging and prominent research domain,encompassing interdisciplinary facets including mechanical design,sensing and actuation control,psychology,cognitive science,flexible electronics,artificial intelligence(AI),etc.We have traced the recent developments of humanoid robot heads for facial expressions,discussed major challenges in embodied AI and flexible electronics for facial expression recognition and generation,and highlighted future trends in this field.Developing humanoid robot heads with natural and authentic facial expressions demands collaboration in interdisciplinary fields such as multi-modal sensing,emotional computing,and human-robot interactions(HRIs)to advance the emotional anthropomorphism of humanoid robots,bridging the gap between humanoid robots and human beings and enabling seamless HRIs.展开更多
Coordinates of the key facial feature points can be captured by motion capture system OPTOTRAK with real-time character and high accuracy. The facial model is considered as an undirected weighted graph. By iteratively...Coordinates of the key facial feature points can be captured by motion capture system OPTOTRAK with real-time character and high accuracy. The facial model is considered as an undirected weighted graph. By iteratively subdividing the related triangle edges, the geodesic distance between points on the model surface is finally obtained. The RBF (Radial Basis Functions) interpolation technique based on geodesic distance is applied to generate deformation of the facial mesh model. Experimental results demonstrate that the geodesic distance can explore the complex topology of human face models perfectly and the method can generate realistic facial expressions.展开更多
Schizophrenia is a severe mental illness responsible for many of the world’s disabilities.It significantly impacts human society;thus,rapid,and efficient identification is required.This research aims to diagnose schi...Schizophrenia is a severe mental illness responsible for many of the world’s disabilities.It significantly impacts human society;thus,rapid,and efficient identification is required.This research aims to diagnose schizophrenia directly from a high-resolution camera,which can capture the subtle micro facial expressions that are difficult to spot with the help of the naked eye.In a clinical study by a team of experts at Bahawal Victoria Hospital(BVH),Bahawalpur,Pakistan,there were 300 people with schizophrenia and 299 healthy subjects.Videos of these participants have been captured and converted into their frames using the OpenFace tool.Additionally,pose,gaze,Action Units(AUs),and land-marked features have been extracted in the Comma Separated Values(CSV)file.Aligned faces have been used to detect schizophrenia by the proposed and the pre-trained Convolutional Neural Network(CNN)models,i.e.,VGG16,Mobile Net,Efficient Net,Google Net,and ResNet50.Moreover,Vision transformer,Swim transformer,big transformer,and vision transformer without attention have also been used to train the models on customized dataset.CSV files have been used to train a model using logistic regression,decision trees,random forest,gradient boosting,and support vector machine classifiers.Moreover,the parameters of the proposed CNN architecture have been optimized using the Particle Swarm Optimization algorithm.The experimental results showed a validation accuracy of 99.6%for the proposed CNN model.The results demonstrated that the reported method is superior to the previous methodologies.The model can be deployed in a real-time environment.展开更多
Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situ...Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.展开更多
To overcome the deficiencies of single-modal emotion recognition based on facial expression or bodily posture in natural scenes,a spatial guidance and temporal enhancement(SG-TE)network is proposed for facial-bodily e...To overcome the deficiencies of single-modal emotion recognition based on facial expression or bodily posture in natural scenes,a spatial guidance and temporal enhancement(SG-TE)network is proposed for facial-bodily emotion recognition.First,ResNet50,DNN and spatial ransformer models are used to capture facial texture vectors,bodily skeleton vectors and wholebody geometric vectors,and an intraframe correlation attention guidance(S-CAG)mechanism,which guides the facial texture vector and the bodily skeleton vector by the whole-body geometric vector,is designed to exploit the spatial potential emotional correlation between face and posture.Second,an interframe significant segment enhancement(T-SSE)structure is embedded into a temporal transformer to enhance high emotional intensity frame information and avoid emotional asynchrony.Finally,an adaptive weight assignment(M-AWA)strategy is constructed to realise facial-bodily fusion.The experimental results on the BabyRobot Emotion Dataset(BRED)and Context-Aware Emotion Recognition(CAER)dataset indicate that the proposed network reaches accuracies of 81.61%and 89.39%,which are 9.61%and 9.46%higher than those of the baseline network,respectively.Compared with the state-of-the-art methods,the proposed method achieves 7.73%and 20.57%higher accuracy than single-modal methods based on facial expression or bodily posture,respectively,and 2.16%higher accuracy than the dual-modal methods based on facial-bodily fusion.Therefore,the proposed method,which adaptively fuses the complementary information of face and posture,improves the quality of emotion recognition in real-world scenarios.展开更多
Digital learning is becoming increasingly important in the crisis COVID-19 and is widespread in most countries.The proliferation of smart devices and 5G telecommunications systems are contributing to the development o...Digital learning is becoming increasingly important in the crisis COVID-19 and is widespread in most countries.The proliferation of smart devices and 5G telecommunications systems are contributing to the development of digital learning systems as an alternative to traditional learning systems.Digital learning includes blended learning,online learning,and personalized learning which mainly depends on the use of new technologies and strategies,so digital learning is widely developed to improve education and combat emerging disasters such as COVID-19 diseases.Despite the tremendous benefits of digital learning,there are many obstacles related to the lack of digitized curriculum and collaboration between teachers and students.Therefore,many attempts have been made to improve the learning outcomes through the following strategies:collaboration,teacher convenience,personalized learning,cost and time savings through professional development,and modeling.In this study,facial expressions and heart rates are used to measure the effectiveness of digital learning systems and the level of learners’engagement in learning environments.The results showed that the proposed approach outperformed the known related works in terms of learning effectiveness.The results of this research can be used to develop a digital learning environment.展开更多
Emotion recognition via facial expressions (ERFE) has attracted a great deal of interest with recent advances in artificial intelligence and pattern recognition. Most studies are based on 2D images, and their perfor...Emotion recognition via facial expressions (ERFE) has attracted a great deal of interest with recent advances in artificial intelligence and pattern recognition. Most studies are based on 2D images, and their performance is usually computationally expensive. In this paper, we propose a real-time emotion recognition approach based on both 2D and 3D facial expression features captured by Kinect sensors. To capture the deformation of the 3D mesh during facial expression, we combine the features of animation units (AUs) and feature point positions (FPPs) tracked by Kinect. A fusion algorithm based on improved emotional profiles (IEPs) arid maximum confidence is proposed to recognize emotions with these real-time facial expression features. Experiments on both an emotion dataset and a real-time video show the superior performance of our method.展开更多
Cyberspace has significantly influenced people’s perceptions of social interactions and communication.As a result,the conventional theories of kin selection and reciprocal altruism fall short in completely elucidatin...Cyberspace has significantly influenced people’s perceptions of social interactions and communication.As a result,the conventional theories of kin selection and reciprocal altruism fall short in completely elucidating online prosocial behavior.Based on the social information processing model,we propose an analytical framework to explain the donation behaviors on online platform.Through collecting textual and visual data from Tencent Gongyi platform pertaining to disease relief projects,and employing techniques encompassing text analysis,image analysis,and propensity score matching,we investigate the impact of both internal emotional cues and external contextual cues on donation behaviors.It is found that positive emotions tend to attract a larger number of donations,while negative emotions tend to result in higher per capita donation amounts.Furthermore,these effects manifest differently under distinct external contextual conditions.展开更多
The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial ex...The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.展开更多
A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree o...A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data.展开更多
Facial features under variant-expressions and partial occlusions could have degrading effect on overall face recognition performance. As a solution, we suggest that the contribution of these features on final classifi...Facial features under variant-expressions and partial occlusions could have degrading effect on overall face recognition performance. As a solution, we suggest that the contribution of these features on final classification should be determined. In order to represent facial features' contribution according to their variations, we propose a feature selection process that describes facial features as local independent component analysis (ICA) features. These local features are acquired using locally lateral subspace (LLS) strategy. Then, through linear discriminant analysis (LDA) we investigate the intraclass and interclass representation of each local ICA feature and express each feature's contribution via a weighting process. Using these weights, we define the contribution of each feature at local classifier level. In order to recognize faces under single sample constraint, we implement LLS strategy on locally linear embedding (LLE) along with the proposed feature selection. Additionally, we highlight the efficiency of the implementation of LLS strategy. The overall accuracy achieved by our approach on datasets with different facial expressions and partial occlusions such as AR, JAFFE, FERET and CK% is 90.70%. We present together in this paper survey results on face recognition performance and physiological feature selection performed by human subjects.展开更多
Objective To study the contribution of executive function to abnormal recognition of facia expressions of emotion in schizophrenia patients. Methods Abnormal recognition of facial expressions of emotion was assayed ac...Objective To study the contribution of executive function to abnormal recognition of facia expressions of emotion in schizophrenia patients. Methods Abnormal recognition of facial expressions of emotion was assayed according to Japanese and Caucasian facial expressions of emotion (JACFEE), Wisconsin card sorting test {WCST), positive and negative symptom scale, and Hamilton anxiety and depression scale, respectively, in 88 paranoid schizophrenia patients and 75 healthy volunteers. Results Patients scored higher on the Positive and Negative Symptom Scale and the Hamilton Anxiety and Depression Scales, displayed lower JACFEE recognition accuracies and poorer WCST performances. The JACFEE recognition accuracy of contempt and disgust was negatively correlated with the negative symptom scale score while the recognition accuracy of fear was positively with the positive symptom scale score and the recognition accuracy of surprise was negatively with the general psychopathology score in patients. Moreover, the WCST could predict the JACFEE recognition accuracy of contempt, disgust, and sadness in patients, and the perseverative errors negatively predicted the recognition accuracy of sadness in healthy volunteers. The JACFEE recognition accuracy of sadness could predict the WCST categories in paranoid schizophrenia patients. Conclusion Recognition accuracy of social-/moral emotions, such as contempt, disgust and sadness is related to the executive function in paranoid schizophrenia patients, especially when regarding sadness.展开更多
Facial expression recognition(FER)has numerous applications in computer security,neuroscience,psychology,and engineering.Owing to its non-intrusiveness,it is considered a useful technology for combating crime.However,...Facial expression recognition(FER)has numerous applications in computer security,neuroscience,psychology,and engineering.Owing to its non-intrusiveness,it is considered a useful technology for combating crime.However,FER is plagued with several challenges,the most serious of which is its poor prediction accuracy in severe head poses.The aim of this study,therefore,is to improve the recognition accuracy in severe head poses by proposing a robust 3D head-tracking algorithm based on an ellipsoidal model,advanced ensemble of AdaBoost,and saturated vector machine(SVM).The FER features are tracked from one frame to the next using the ellipsoidal tracking model,and the visible expressive facial key points are extracted using Gabor filters.The ensemble algorithm(Ada-AdaSVM)is then used for feature selection and classification.The proposed technique is evaluated using the Bosphorus,BU-3DFE,MMI,CK^(+),and BP4D-Spontaneous facial expression databases.The overall performance is outstanding.展开更多
Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cogni...Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cognition,the neural mechanisms underlying low-frequency hemodynamic oscillations(LFHO)<1 Hz have not yet been fully explored.One way to examine oscillatory neural dynamics is to use a facial expression(FE)paradigm to induce steady-state visual evoked potentials(SSVEPs),which has been used in electroencephalography studies of high-frequency brain oscillation activity.In this study,LFHO during SSVEP-inducing periodic flickering stimuli presentation were inspected using functional near-infrared spectroscopy(fNIRS),in which hemodynamic responses in the prefrontal cortex were recorded while participants were passively viewing dynamic FEs flickering at 0.2 Hz.The fast Fourier analysis results demonstrated that the power exhibited monochronic peaks at 0.2 Hz across all channels,indicating that the periodic events successfully elicited LFHO in the prefrontal cortex.More importantly,measurement of LFHO can effectively distinguish the brain activation difference between different cognitive conditions,with happy FE presentation showing greater LFHO power than neutral FE presentation.These results demonstrate that stimuli flashing at a given frequency can induce LFHO in the prefrontal cortex,which provides new insights into the cognitive mechanisms involved in slow oscillation.展开更多
文摘The dynamics of student engagement and emotional states significantly influence learning outcomes.Positive emotions resulting from successful task completion stand in contrast to negative affective states that arise from learning struggles or failures.Effective transitions to engagement occur upon problem resolution,while unresolved issues lead to frustration and subsequent boredom.This study proposes a Convolutional Neural Networks(CNN)based approach utilizing the Multi⁃source Academic Affective Engagement Dataset(MAAED)to categorize facial expressions into boredom,confusion,frustration,and yawning.This method provides an efficient and objective way to assess student engagement by extracting features from facial images.Recognizing and addressing negative affective states,such as confusion and boredom,is fundamental in creating supportive learning environments.Through automated frame extraction and model comparison,this study demonstrates reduced loss values with improving accuracy,showcasing the effectiveness of this method in objectively evaluating student engagement.Monitoring facial engagement with CNN using the MAAED dataset is essential for gaining insights into human behaviour and improving educational experiences.
文摘Pain is a strong symptom of diseases. Being an involuntary unpleasant feeling, it can be considered a reliable indicator of health issues. Pain has always been expressed verbally, but in some cases, traditional patient self-reporting is not efficient. On one side, there are patients who have neurological disorders and cannot express themselves accurately, as well as patients who suddenly lose consciousness due to an abrupt faintness. On another side, medical staff working in crowded hospitals need to focus on emergencies and would opt for the automation of the task of looking after hospitalized patients during their entire stay, in order to notice any pain-related emergency. These issues can be tackled with deep learning. Knowing that pain is generally followed by spontaneous facial behaviors, facial expressions can be used as a substitute to verbal reporting, to express pain. In this paper, a convolutional neural network (CNN) model was built and trained to detect pain through patients’ facial expressions, using the UNBC-McMaster Shoulder Pain dataset. First, faces were detected from images using the Haarcascade Frontal Face Detector provided by OpenCV, and preprocessed through gray scaling, histogram equalization, face detection, image cropping, mean filtering, and normalization. Next, preprocessed images were fed into a CNN model which was built based on a modified version of the VGG16 architecture. The model was finally evaluated and fine-tuned in a continuous way based on its accuracy, which reached 92.5%.
文摘Bodily gestures,facial expressions,and intonations are argued to be notably important features of spoken languagewhich are opposed to written language.Bodily gestures with or without spoken words can influence the clarity and density of expres-sion and involvement of listeners.Facial expressions whether or not correspond with exact thought could be"decoded"to influencethe extent of intelligibility of expression.Intonation can always reflect the mutual beliefs concerning the propositional content andstates of consciousness relating to the expression and interpretation.Therefore,these can considerably improve or abate the accura-cy of expression and interpretation of thought.
文摘TREFACE (Test for Recognition of Facial Expressions with Emotional Conflict) is a computerized model for investigating the emotional factor in executive functions based on the Stroop paradigm, for the recognition of emotional expressions in human faces. To investigate the influence of the emotional component at the cortical level, the electroencephalographic (EEG) recording technique was used to measure the involvement of cortical areas during the execution of certain tasks. Thirty Brazilian native Portuguese-speaking graduate students were evaluated on their anxiety and depression levels and on their well-being at the time of the session. The EEG recording was performed in 19 channels during the execution of the TREFACE test in the 3 stages established by the model-guided training, reading, and recognition—both with congruent conditions, when the image corresponds to the word shown, and incongruent condition, when there is no correspondence. The results showed better performance in the reading stage and in congruent conditions, while greater intensity of cortical activation in the recognition stage and in incongruent conditions. In a complementary way, specific frontal activations were observed: intense theta frequency activation in the left extension representing the frontal recruitment of posterior regions in information processing;also, activation in alpha frequency in the right frontotemporal line, illustrating the executive processing in the control of attention, in addition to the dorsal manifestation of the prefrontal side, for emotional performance. Activations in beta and gamma frequencies were displayed in a more intensely distributed way in the recognition stage. The results of this mapping of cortical activity in our study can help to understand how words and images of faces can be regulated in everyday life and in clinical contexts, suggesting an integrated model that includes the neural bases of the regulation strategy.
基金supported by the National Natural Science Foundation of China,No.81473769(to WW),81772430(to WW)a grant from the Training Program of Innovation and Entrepreneurship for Undergraduates of Southern Medical University of Guangdong Province of China in 2016,No.201612121057(to WW)
文摘OBJECTIVE: The objective of this study is to summarize and analyze the brain signal patterns of empathy for pain caused by facial expressions of pain utilizing activation likelihood estimation, a meta-analysis method. DATA SOURCES: Studies concerning the brain mechanism were searched from the Science Citation Index, Science Direct, PubMed, DeepDyve, Cochrane Library, SinoMed, Wanfang, VIP, China National Knowledge Infrastructure, and other databases, such as SpringerLink, AMA, Science Online, Wiley Online, were collected. A time limitation of up to 13 December 2016 was applied to this study. DATA SELECTION: Studies presenting with all of the following criteria were considered for study inclusion: Use of functional magnetic resonance imaging, neutral and pained facial expression stimuli, involvement of adult healthy human participants over 18 years of age, whose empathy ability showed no difference from the healthy adult, a painless basic state, results presented in Talairach or Montreal Neurological Institute coordinates, multiple studies by the same team as long as they used different raw data. OUTCOME MEASURES: Activation likelihood estimation was used to calculate the combined main activated brain regions under the stimulation of pained facial expression. RESULTS: Eight studies were included, containing 178 subjects. Meta-analysis results suggested that the anterior cingulate cortex(BA32), anterior central gyrus(BA44), fusiform gyrus, and insula(BA13) were activated positively as major brain areas under the stimulation of pained facial expression. CONCLUSION: Our study shows that pained facial expression alone, without viewing of painful stimuli, activated brain regions related to pain empathy, further contributing to revealing the brain's mechanisms of pain empathy.
基金supported by the National Natural Science Foundation of China (U20A2017)Guangdong Basic and Applied Basic Research Foundation (2022A1515010134,2022A1515110598)+2 种基金Youth Innovation Promotion Association of Chinese Academy of Sciences (2017120)Shenzhen-Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions (NYKFKT2019009)Shenzhen Technological Research Center for Primate Translational Medicine (F-2021-Z99-504979)。
文摘Accurately recognizing facial expressions is essential for effective social interactions.Non-human primates(NHPs)are widely used in the study of the neural mechanisms underpinning facial expression processing,yet it remains unclear how well monkeys can recognize the facial expressions of other species such as humans.In this study,we systematically investigated how monkeys process the facial expressions of conspecifics and humans using eye-tracking technology and sophisticated behavioral tasks,namely the temporal discrimination task(TDT)and face scan task(FST).We found that monkeys showed prolonged subjective time perception in response to Negative facial expressions in monkeys while showing longer reaction time to Negative facial expressions in humans.Monkey faces also reliably induced divergent pupil contraction in response to different expressions,while human faces and scrambled monkey faces did not.Furthermore,viewing patterns in the FST indicated that monkeys only showed bias toward emotional expressions upon observing monkey faces.Finally,masking the eye region marginally decreased the viewing duration for monkey faces but not for human faces.By probing facial expression processing in monkeys,our study demonstrates that monkeys are more sensitive to the facial expressions of conspecifics than those of humans,thus shedding new light on inter-species communication through facial expressions between NHPs and humans.
基金supported by the National Natural Science Foundation of China(nos.52188102 and 51925503)the Science and Technology Development Fund of Macao SAR(file na.0117/2024/AMJ)+1 种基金Zhuhai UM Science&Technology Research Institute(CP-009-2024)the State Key Laboratory of Intelligent Manufacturing Equipment and Tech-nology(IMETKF2024003),HUST,Wuhan,China.
文摘The realization of natural and authentic facial expressions in humanoid robots poses a challenging and prominent research domain,encompassing interdisciplinary facets including mechanical design,sensing and actuation control,psychology,cognitive science,flexible electronics,artificial intelligence(AI),etc.We have traced the recent developments of humanoid robot heads for facial expressions,discussed major challenges in embodied AI and flexible electronics for facial expression recognition and generation,and highlighted future trends in this field.Developing humanoid robot heads with natural and authentic facial expressions demands collaboration in interdisciplinary fields such as multi-modal sensing,emotional computing,and human-robot interactions(HRIs)to advance the emotional anthropomorphism of humanoid robots,bridging the gap between humanoid robots and human beings and enabling seamless HRIs.
基金Support by Nation Natural Science Foundation of China (60873269)
文摘Coordinates of the key facial feature points can be captured by motion capture system OPTOTRAK with real-time character and high accuracy. The facial model is considered as an undirected weighted graph. By iteratively subdividing the related triangle edges, the geodesic distance between points on the model surface is finally obtained. The RBF (Radial Basis Functions) interpolation technique based on geodesic distance is applied to generate deformation of the facial mesh model. Experimental results demonstrate that the geodesic distance can explore the complex topology of human face models perfectly and the method can generate realistic facial expressions.
文摘Schizophrenia is a severe mental illness responsible for many of the world’s disabilities.It significantly impacts human society;thus,rapid,and efficient identification is required.This research aims to diagnose schizophrenia directly from a high-resolution camera,which can capture the subtle micro facial expressions that are difficult to spot with the help of the naked eye.In a clinical study by a team of experts at Bahawal Victoria Hospital(BVH),Bahawalpur,Pakistan,there were 300 people with schizophrenia and 299 healthy subjects.Videos of these participants have been captured and converted into their frames using the OpenFace tool.Additionally,pose,gaze,Action Units(AUs),and land-marked features have been extracted in the Comma Separated Values(CSV)file.Aligned faces have been used to detect schizophrenia by the proposed and the pre-trained Convolutional Neural Network(CNN)models,i.e.,VGG16,Mobile Net,Efficient Net,Google Net,and ResNet50.Moreover,Vision transformer,Swim transformer,big transformer,and vision transformer without attention have also been used to train the models on customized dataset.CSV files have been used to train a model using logistic regression,decision trees,random forest,gradient boosting,and support vector machine classifiers.Moreover,the parameters of the proposed CNN architecture have been optimized using the Particle Swarm Optimization algorithm.The experimental results showed a validation accuracy of 99.6%for the proposed CNN model.The results demonstrated that the reported method is superior to the previous methodologies.The model can be deployed in a real-time environment.
基金supported by China Academy of Railway Sciences Corporation Limited(No.2021YJ127).
文摘Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.
基金National Natural Science Foundation of China,Grant/Award Number:62176084,Natural Science Foundation of Anhui Province of China,Grant/Award Number:1908085MF195,Natural Science Research Project of the Education Department of Anhui Province of China Grant/Award Numbers:2022AH051038,2023AH050474 and 2023AH050490.
文摘To overcome the deficiencies of single-modal emotion recognition based on facial expression or bodily posture in natural scenes,a spatial guidance and temporal enhancement(SG-TE)network is proposed for facial-bodily emotion recognition.First,ResNet50,DNN and spatial ransformer models are used to capture facial texture vectors,bodily skeleton vectors and wholebody geometric vectors,and an intraframe correlation attention guidance(S-CAG)mechanism,which guides the facial texture vector and the bodily skeleton vector by the whole-body geometric vector,is designed to exploit the spatial potential emotional correlation between face and posture.Second,an interframe significant segment enhancement(T-SSE)structure is embedded into a temporal transformer to enhance high emotional intensity frame information and avoid emotional asynchrony.Finally,an adaptive weight assignment(M-AWA)strategy is constructed to realise facial-bodily fusion.The experimental results on the BabyRobot Emotion Dataset(BRED)and Context-Aware Emotion Recognition(CAER)dataset indicate that the proposed network reaches accuracies of 81.61%and 89.39%,which are 9.61%and 9.46%higher than those of the baseline network,respectively.Compared with the state-of-the-art methods,the proposed method achieves 7.73%and 20.57%higher accuracy than single-modal methods based on facial expression or bodily posture,respectively,and 2.16%higher accuracy than the dual-modal methods based on facial-bodily fusion.Therefore,the proposed method,which adaptively fuses the complementary information of face and posture,improves the quality of emotion recognition in real-world scenarios.
文摘Digital learning is becoming increasingly important in the crisis COVID-19 and is widespread in most countries.The proliferation of smart devices and 5G telecommunications systems are contributing to the development of digital learning systems as an alternative to traditional learning systems.Digital learning includes blended learning,online learning,and personalized learning which mainly depends on the use of new technologies and strategies,so digital learning is widely developed to improve education and combat emerging disasters such as COVID-19 diseases.Despite the tremendous benefits of digital learning,there are many obstacles related to the lack of digitized curriculum and collaboration between teachers and students.Therefore,many attempts have been made to improve the learning outcomes through the following strategies:collaboration,teacher convenience,personalized learning,cost and time savings through professional development,and modeling.In this study,facial expressions and heart rates are used to measure the effectiveness of digital learning systems and the level of learners’engagement in learning environments.The results showed that the proposed approach outperformed the known related works in terms of learning effectiveness.The results of this research can be used to develop a digital learning environment.
基金Project'supportedV by the National Natural Science Foundation of China (No. 61272211) and the Six Talent Peaks Project in Jiangsu Province of China (No. DZXX-026)
文摘Emotion recognition via facial expressions (ERFE) has attracted a great deal of interest with recent advances in artificial intelligence and pattern recognition. Most studies are based on 2D images, and their performance is usually computationally expensive. In this paper, we propose a real-time emotion recognition approach based on both 2D and 3D facial expression features captured by Kinect sensors. To capture the deformation of the 3D mesh during facial expression, we combine the features of animation units (AUs) and feature point positions (FPPs) tracked by Kinect. A fusion algorithm based on improved emotional profiles (IEPs) arid maximum confidence is proposed to recognize emotions with these real-time facial expression features. Experiments on both an emotion dataset and a real-time video show the superior performance of our method.
文摘Cyberspace has significantly influenced people’s perceptions of social interactions and communication.As a result,the conventional theories of kin selection and reciprocal altruism fall short in completely elucidating online prosocial behavior.Based on the social information processing model,we propose an analytical framework to explain the donation behaviors on online platform.Through collecting textual and visual data from Tencent Gongyi platform pertaining to disease relief projects,and employing techniques encompassing text analysis,image analysis,and propensity score matching,we investigate the impact of both internal emotional cues and external contextual cues on donation behaviors.It is found that positive emotions tend to attract a larger number of donations,while negative emotions tend to result in higher per capita donation amounts.Furthermore,these effects manifest differently under distinct external contextual conditions.
基金supported by the National Natural Science Foundation of China under Grant No.62276051the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC0640Medical Industry Information Integration Collaborative Innovation Project of Yangtze Delta Region Institute under Grant No.U0723002。
文摘The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.
基金The National Natural Science Foundation of China (No.60503023,60872160)the Natural Science Foundation for Universities ofJiangsu Province (No.08KJD520009)the Intramural Research Foundationof Nanjing University of Information Science and Technology(No.Y603)
文摘A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data.
基金supported by Ministry of Higher Education MalaysiaUniversiti Teknologi MARA,Malaysia
文摘Facial features under variant-expressions and partial occlusions could have degrading effect on overall face recognition performance. As a solution, we suggest that the contribution of these features on final classification should be determined. In order to represent facial features' contribution according to their variations, we propose a feature selection process that describes facial features as local independent component analysis (ICA) features. These local features are acquired using locally lateral subspace (LLS) strategy. Then, through linear discriminant analysis (LDA) we investigate the intraclass and interclass representation of each local ICA feature and express each feature's contribution via a weighting process. Using these weights, we define the contribution of each feature at local classifier level. In order to recognize faces under single sample constraint, we implement LLS strategy on locally linear embedding (LLE) along with the proposed feature selection. Additionally, we highlight the efficiency of the implementation of LLS strategy. The overall accuracy achieved by our approach on datasets with different facial expressions and partial occlusions such as AR, JAFFE, FERET and CK% is 90.70%. We present together in this paper survey results on face recognition performance and physiological feature selection performed by human subjects.
基金supported by the Natural Science Foundation of China (Nos. 30971042 and 91132715)the Innovative Research Team for Translational Neuropsychiatric Medicine, Zhejiang Province (2011R50049)the Program for Changjiang Scholars and Innovative Research Team in University, Chinese Ministry of Education (No. IRT1038)
文摘Objective To study the contribution of executive function to abnormal recognition of facia expressions of emotion in schizophrenia patients. Methods Abnormal recognition of facial expressions of emotion was assayed according to Japanese and Caucasian facial expressions of emotion (JACFEE), Wisconsin card sorting test {WCST), positive and negative symptom scale, and Hamilton anxiety and depression scale, respectively, in 88 paranoid schizophrenia patients and 75 healthy volunteers. Results Patients scored higher on the Positive and Negative Symptom Scale and the Hamilton Anxiety and Depression Scales, displayed lower JACFEE recognition accuracies and poorer WCST performances. The JACFEE recognition accuracy of contempt and disgust was negatively correlated with the negative symptom scale score while the recognition accuracy of fear was positively with the positive symptom scale score and the recognition accuracy of surprise was negatively with the general psychopathology score in patients. Moreover, the WCST could predict the JACFEE recognition accuracy of contempt, disgust, and sadness in patients, and the perseverative errors negatively predicted the recognition accuracy of sadness in healthy volunteers. The JACFEE recognition accuracy of sadness could predict the WCST categories in paranoid schizophrenia patients. Conclusion Recognition accuracy of social-/moral emotions, such as contempt, disgust and sadness is related to the executive function in paranoid schizophrenia patients, especially when regarding sadness.
文摘Facial expression recognition(FER)has numerous applications in computer security,neuroscience,psychology,and engineering.Owing to its non-intrusiveness,it is considered a useful technology for combating crime.However,FER is plagued with several challenges,the most serious of which is its poor prediction accuracy in severe head poses.The aim of this study,therefore,is to improve the recognition accuracy in severe head poses by proposing a robust 3D head-tracking algorithm based on an ellipsoidal model,advanced ensemble of AdaBoost,and saturated vector machine(SVM).The FER features are tracked from one frame to the next using the ellipsoidal tracking model,and the visible expressive facial key points are extracted using Gabor filters.The ensemble algorithm(Ada-AdaSVM)is then used for feature selection and classification.The proposed technique is evaluated using the Bosphorus,BU-3DFE,MMI,CK^(+),and BP4D-Spontaneous facial expression databases.The overall performance is outstanding.
基金University of Macao,Nos.MYRG2019-00082-FHS and MYRG2018-00081-FHSMacao Science and Technology Development Fund,No.FDCT 025/2015/A1 and FDCT 0011/2018/A1.
文摘Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cognition,the neural mechanisms underlying low-frequency hemodynamic oscillations(LFHO)<1 Hz have not yet been fully explored.One way to examine oscillatory neural dynamics is to use a facial expression(FE)paradigm to induce steady-state visual evoked potentials(SSVEPs),which has been used in electroencephalography studies of high-frequency brain oscillation activity.In this study,LFHO during SSVEP-inducing periodic flickering stimuli presentation were inspected using functional near-infrared spectroscopy(fNIRS),in which hemodynamic responses in the prefrontal cortex were recorded while participants were passively viewing dynamic FEs flickering at 0.2 Hz.The fast Fourier analysis results demonstrated that the power exhibited monochronic peaks at 0.2 Hz across all channels,indicating that the periodic events successfully elicited LFHO in the prefrontal cortex.More importantly,measurement of LFHO can effectively distinguish the brain activation difference between different cognitive conditions,with happy FE presentation showing greater LFHO power than neutral FE presentation.These results demonstrate that stimuli flashing at a given frequency can induce LFHO in the prefrontal cortex,which provides new insights into the cognitive mechanisms involved in slow oscillation.