针对在现有人脸静态识别过程中被识别人需等待配合的问题,文中提出了一种动态人脸识别系统。该系统采用了基于RetinaFace与FaceNet算法的动态人脸检测和识别方法,并进行了优化,以达到高识别精度和实时性的目标。其中,RetinaFace检测采用...针对在现有人脸静态识别过程中被识别人需等待配合的问题,文中提出了一种动态人脸识别系统。该系统采用了基于RetinaFace与FaceNet算法的动态人脸检测和识别方法,并进行了优化,以达到高识别精度和实时性的目标。其中,RetinaFace检测采用GhostNet作为骨干网络,使用Adaptive-NMS(Non Max Suppression)非极大值抑制用于人脸框的回归,FaceNet识别采用MobileNetV1作为骨干网络,使用Triplet损失与交叉熵损失结合的联合损失函数用以人脸分类。优化后的算法在检测与识别上具有良好表现,改进RetinaFace算法在WiderFace数据集下检测精度为93.35%、90.84%和80.43%,FPS(Frames Per Second)可达53 frame·s^(-1)。动态人脸检测平均检测精度为96%,FPS为21 frame·s^(-1)。当FaceNet阈值设为1.15时,识别率最高达到98.23%。动态识别系统平均识别精度98%,FPS可达20 frame·s^(-1)。实验结果表明,该系统解决了人脸静态识别中需等待配合的问题,具有较高的识别精度与实时性。展开更多
针对传统课堂考勤中耗时长、效率低等问题,提出了一种基于计算机视觉的考勤系统,利用深度学习进行人脸识别与手机入袋检测,记录学生的到课情况与手机上交情况。为将考勤信息可视化,设计了3种登录模式的综合考勤系统。实验结果表明,该系...针对传统课堂考勤中耗时长、效率低等问题,提出了一种基于计算机视觉的考勤系统,利用深度学习进行人脸识别与手机入袋检测,记录学生的到课情况与手机上交情况。为将考勤信息可视化,设计了3种登录模式的综合考勤系统。实验结果表明,该系统不仅能在毫秒级的时间内完成检测,而且平均准确率(mean Average Precision,mAP)0.5达到0.990,保证了精确率和召回率。展开更多
文摘针对在现有人脸静态识别过程中被识别人需等待配合的问题,文中提出了一种动态人脸识别系统。该系统采用了基于RetinaFace与FaceNet算法的动态人脸检测和识别方法,并进行了优化,以达到高识别精度和实时性的目标。其中,RetinaFace检测采用GhostNet作为骨干网络,使用Adaptive-NMS(Non Max Suppression)非极大值抑制用于人脸框的回归,FaceNet识别采用MobileNetV1作为骨干网络,使用Triplet损失与交叉熵损失结合的联合损失函数用以人脸分类。优化后的算法在检测与识别上具有良好表现,改进RetinaFace算法在WiderFace数据集下检测精度为93.35%、90.84%和80.43%,FPS(Frames Per Second)可达53 frame·s^(-1)。动态人脸检测平均检测精度为96%,FPS为21 frame·s^(-1)。当FaceNet阈值设为1.15时,识别率最高达到98.23%。动态识别系统平均识别精度98%,FPS可达20 frame·s^(-1)。实验结果表明,该系统解决了人脸静态识别中需等待配合的问题,具有较高的识别精度与实时性。
文摘针对传统课堂考勤中耗时长、效率低等问题,提出了一种基于计算机视觉的考勤系统,利用深度学习进行人脸识别与手机入袋检测,记录学生的到课情况与手机上交情况。为将考勤信息可视化,设计了3种登录模式的综合考勤系统。实验结果表明,该系统不仅能在毫秒级的时间内完成检测,而且平均准确率(mean Average Precision,mAP)0.5达到0.990,保证了精确率和召回率。