期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
C-privacy:A social relationship-driven image customization sharing method in cyber-physical networks
1
作者 Dapeng Wu Jian Liu +3 位作者 Yangliang Wan Zhigang Yang Ruyan Wang Xinqi Lin 《Digital Communications and Networks》 2025年第2期563-573,共11页
Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV... Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV).With the increasing popularity of digital photography and Internet technology,more and more users are sharing images on CPN.However,many images are shared without any privacy processing,exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI)algorithms.Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy.To address this issue,we propose a social relationship-driven privacy customization protection model for publishers and co-photographers.We construct a heterogeneous social information network centered on social relationships,introduce a user intimacy evaluation method with time decay,and evaluate privacy levels considering user interest similarity.To protect user privacy while maintaining image appreciation,we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN)to swap faces that need to be protected.Our proposed method minimizes the loss of image utility while satisfying privacy requirements,as shown by extensive theoretical and simulation analyses. 展开更多
关键词 Cyber-physical networks Customized privacy face-swapping Heterogeneous information network Deep fakes
在线阅读 下载PDF
FSA-Net:A Cost-efficient Face Swapping Attention Network with Occlusion-Aware Normalization
2
作者 Zhipeng Bin Huihuang Zhao +1 位作者 Xiaoman Liang Wenli Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期971-983,共13页
The main challenges in face swapping are the preservation and adaptive superimposition of attributes of two images.In this study,the Face Swapping Attention Network(FSA-Net)is proposed to generate photoreal-istic face... The main challenges in face swapping are the preservation and adaptive superimposition of attributes of two images.In this study,the Face Swapping Attention Network(FSA-Net)is proposed to generate photoreal-istic face swapping.The existing face-swapping methods ignore the blending attributes or mismatch the facial keypoint(cheek,mouth,eye,nose,etc.),which causes artifacts and makes the generated face silhouette non-realistic.To address this problem,a novel reinforced multi-aware attention module,referred to as RMAA,is proposed for handling facial fusion and expression occlusion flaws.The framework includes two stages.In the first stage,a novel attribute encoder is proposed to extract multiple levels of target face attributes and integrate identities and attributes when synthesizing swapped faces.In the second stage,a novel Stochastic Error Refinement(SRE)module is designed to solve the problem of facial occlusion,which is used to repair occlusion regions in a semi-supervised way without any post-processing.The proposed method is then compared with the current state-of-the-art methods.The obtained results demonstrate the qualitative and quantitative outperformance of the proposed method.More details are provided at the footnote link and at https://sites.google.com/view/fsa-net-official. 展开更多
关键词 Attention face-swapping neural network face manipulation identity swap image translation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部