An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil...An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.展开更多
A displacement sensor based on the fiber Fabry-Perot (F-P) cavity was proposed in this paper. Theoretical and experimental analyses were presented. Displacement resolution was demonstrated by spectrum-domain experimen...A displacement sensor based on the fiber Fabry-Perot (F-P) cavity was proposed in this paper. Theoretical and experimental analyses were presented. Displacement resolution was demonstrated by spectrum-domain experiments to obtain the dynamic range of the F-P sensor, and a piezoelectric crystal unit (PZT) was used as the driver. The output signal was modulated by a piezoelectric ceramic ring and demodulated by a phase-locked oscillator. The experimental results show that the displacement resolution of the F-P sensor is less than 5 nm and the dynamic range is more than 100 μm. As acceleration is the second-order differential of displacement, an accelerometer model was proposed using the finite element method (FEM) nd ANSYS software.展开更多
The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is pe...The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.展开更多
Based on the principle of Fabry-Perot (F-P) interference, a new type of optical fiber curvature sensor is presented,which is fabricated by single-mode fiber(SMF), ceramic tube and double-cladding fiber (DCF). And the ...Based on the principle of Fabry-Perot (F-P) interference, a new type of optical fiber curvature sensor is presented,which is fabricated by single-mode fiber(SMF), ceramic tube and double-cladding fiber (DCF). And the curvature sensing properties are analyzed, and the double-peak method is used to demodulate the cavity length. The experimental results show that the F-P interference spectrum shifts toward long wavelengths with increasing the curvature. And the sensors are placed in different positions on the cantilever to get their different curvature sensitivities. Smaller initial cavity length gives greater sensor sensitivity. The best curvature sensitivity is achieved as 2 554.53 pm/m^(-1) in 0.71—1.18 m^(-1). By demodulating the length of the F-P cavity, the cavity length of sensor 4 is changed by 0.08 mm. Therefore, the sensor has some potential for measure the small displacement.展开更多
A simple and convenient terahertz wavemeter based on a Fabry-Perot interferometer (FPI) is presented.The interferometer is composed of two identical Ge etalons,which act as high-reflectance mirrors for terahertz waves...A simple and convenient terahertz wavemeter based on a Fabry-Perot interferometer (FPI) is presented.The interferometer is composed of two identical Ge etalons,which act as high-reflectance mirrors for terahertz waves.The transmission characteristics of the Ge FPI are analyzed using multiple-beam interference theory.The theoretical finesse of the FPI,defined as a ratio of 2π to the phase halfwidth of the transmission fringes,is larger than 12.5.Here,the wavemeter is used to measure the wavelengths of an optically pumped NH3 terahertz laser.The experimental results indicate that the measuring uncertainties are within ±1%.Higher accuracy can be expected if the power or pulse energy of the terahertz source is more stable.展开更多
A hybrid optical bistable system of a plasma in a Fabry-Perot interferometer driven by a single-mode cw laser is proposed.The general expressions of the mirvimum change of the electron density for optical bistabili.ty...A hybrid optical bistable system of a plasma in a Fabry-Perot interferometer driven by a single-mode cw laser is proposed.The general expressions of the mirvimum change of the electron density for optical bistabili.ty and the changes of electron density at the"on"and"off"points of the optical bistabiIity are obtained theoretically,The necessary data for the design of the optical bistability in infrared to mm-Dave region are given.展开更多
Modulation degree of refractive index is an important parameter for information storage in photorefractive materials. Using the relationship between the refractive index and the wavelengths of laser and the order of i...Modulation degree of refractive index is an important parameter for information storage in photorefractive materials. Using the relationship between the refractive index and the wavelengths of laser and the order of interference, we introduce a new method to measure the modulation degree of refractive index in photorefractive materials through detecting the shift of the interference fringe in a fiber Fabry-Perot interferometer with a CCD. The measurement precision is also analyzed. With this method, the modulation degree of refractive index in our prepared SCLP/E7/C 60 photorefractive polymer is measured for different external voltages and the external voltage corresponding to the maximal modulation degree of refractive index is reported. The dynamic change of refractive index in the SCLP/E7/C 60 is also studied, which will be helpful to understand the reaction mechanism of photochemistry in the material.展开更多
This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including...This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including acetone and ethanol at room temperature. The sensitivity for measurement of refractive index change of ethanol is 1138 nm/RIU at the wavelength of 1550 nm. In addition, the sensor fabrication is simple including only cleaving, splicing, and etching. The signal is stable with high visibility. Therefore, it provides a valuable tool in biological and chemical applications.展开更多
Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer(EFPI)have been extensively applied in various industrial and biomedical fields.In this paper,some key improvements of EFPI-based pressure sens...Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer(EFPI)have been extensively applied in various industrial and biomedical fields.In this paper,some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique,diaphragm-based EFPI sensors,and white light interference technology have been reviewed.Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced.Signal demodulation algorithms based on the cross correlation and mean square error(MSE)estimation have been proposed for retrieving the cavity length of EFPI.Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out.For downhole monitoring,an EFPI and a fiber Bragg grating(FBG)cascade multiplexing fiber-optic sensor system has been developed,which can operate in temperature 300℃with a good long-term stability and extremely low temperature cross-sensitivity.Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection.Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.展开更多
A novel scheme is proposed to transform a Gaussian optical pulse to a millimeter-wave (mm-wave) frequency modulation pulse by using a Fabry-Perot interferometer (FPI) for radio-over-fiber (ROF) system. It is sho...A novel scheme is proposed to transform a Gaussian optical pulse to a millimeter-wave (mm-wave) frequency modulation pulse by using a Fabry-Perot interferometer (FPI) for radio-over-fiber (ROF) system. It is shown that modulation frequency of mm-wave is determined by the optical path of the Fabry-Perot (F-P) cavity, and amplitude decay time and energy transfer efficiency axe related to the reflectivity of the F-P cavity mirror. The effect of pulse train extension on inter-symbol interference is also discussed.展开更多
A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the qua...A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 p.m to 140 p.m. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of 2/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.展开更多
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity le...A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/℃ to 0.89 pm/℃, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.展开更多
In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement. The usefulness of the interferometer is demonstrated by simulations and experiments.
The sensing characteristics of irradiated fiber Bragg gratings(FBGs)and Fabry-Perot interferometers(FPIs)were investigated under a 2MGy dose of gamma radiation.The study found that the pressure sensitivity of FP senso...The sensing characteristics of irradiated fiber Bragg gratings(FBGs)and Fabry-Perot interferometers(FPIs)were investigated under a 2MGy dose of gamma radiation.The study found that the pressure sensitivity of FP sensors after irradiation was stable,while the temperature sensitivity of FBG sensors was unstable,and both wavelengths displayed a shift.These findings offer the possibility for the application of FP pressure sensors in the gamma radiation environments,and FBG sensors require further research to be suitable for application in the nuclear radiation environments.展开更多
A simple nanostrain direct current (DC) measurement system based on a chirped Bragg grating Fabry-Perot (FP) structure is presented. The FP cavity, formed between the chirped fiber Bragg grating (CFBG) and the f...A simple nanostrain direct current (DC) measurement system based on a chirped Bragg grating Fabry-Perot (FP) structure is presented. The FP cavity, formed between the chirped fiber Bragg grating (CFBG) and the fiber end face, presents an aperiodic behavior due to the CFBG. A laser located in the fringe pattern slope is used to interrogate the sensing head. The optical power parameter is analyzed when strain is applied, for long and short period fringe pattern wavelengths, and sensitivities of-2.87 μW/με and-5.48μW/με are respectively obtained. This configuration presents a resolution of 70 ε.展开更多
Generally, a confocal Fabry-Perot interferometer is only able to detect the out-of-plane component of a displacement field; while the in-plane component often has the information about the material which cannot be fou...Generally, a confocal Fabry-Perot interferometer is only able to detect the out-of-plane component of a displacement field; while the in-plane component often has the information about the material which cannot be found in this out-of-plane component. In this paper, based on a confocal Fabry-Perot interferometer set-up for detecting the out-of-plane component of a laser generated acoustic field, a technique is developed to detect both the out-of-plane and in-plane displacement components simultaneously with a novel two-channel confocal Fabry-Perot interferometer.展开更多
This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot ...This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot interferometers and fiber gratings.展开更多
We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (...We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/με. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.展开更多
In this paper,a theoretical analysis of how the excitation conditions affect the sapphire fiber Fabry-Perot interferometer(SFPI)visibility was performed.The conditions were considered,in which an SFPI was excited by a...In this paper,a theoretical analysis of how the excitation conditions affect the sapphire fiber Fabry-Perot interferometer(SFPI)visibility was performed.The conditions were considered,in which an SFPI was excited by a single-mode fiber(SMF),a multimode fiber(MMF),and a fiber collimator.The finite difference method(FDM)was used to realize the numerical solution of the modal electric fields,and then,the modal excited distributions in the sapphire fiber and the SFPI visibility were calculated.The results showed that different numbers of modes were excited in sapphire fibers under different excitation conditions and finally affected the fringe visibility of the SFPI.The fiber collimator excited the fewest modes and the visibility remained at the highest level.Finally,an experiment was performed,and the experimental results agreed well with the theoretical results.展开更多
A Fabry-Perot interferometer,funded by the Meridian Project in China,was deployed at the Xinglong station(40.2°N,117.4°E) of the National Astronomical Observatories in Hebei Province,China.The instrument has...A Fabry-Perot interferometer,funded by the Meridian Project in China,was deployed at the Xinglong station(40.2°N,117.4°E) of the National Astronomical Observatories in Hebei Province,China.The instrument has been operating since April 2010,measuring mesospheric and thermospheric winds.The first observational data of winds at three heights in the mesosphere and thermosphere were analyzed,demonstrating the capacity of this instrument to aid basic scientific research.The wavelengths of three airglow emissions were OH892.0,OI 557.7,and OI 630.0 nm,which corresponded to heights of 87,98,and 250 km,respectively.Three 38-day data sets of horizontal winds,from April 5,2010 to May 12,2010,show clear day-to-day variations at the same height.The minimum and maximum meridional winds at heights of 87,98,and 250 km were-16.5 to 8.7 m/s,-24.4 to 15.9 m/s,and-43.6 to 1.5 m/s.Measurements of zonal winds were-5.4 to 7.6 m/s,2.3 to 23.0 m/s,and-22.6 to 49.3 m/s.The average data from the observations was consistent with the data from HWM93.The wind data at heights of 87 and 98 km suggest a semi-diurnal oscillation,clearly consistent with HWM93 results.Conversely there was a clear discrepancy between the observations and the model at 250 km.In general,this Fabry-Perot interferometer is a useful ground-based instrument for measuring mesospheric and thermospheric winds at middle latitudes.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735014,61327012,and 61275088)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.08JZ58)the Northwest University Graduate Innovation and Creativity Funds,China(Grant No.YZZ17088)
文摘An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.
基金Project (No. 111303-8112D2) supported by the National DefenseResearch Foundation of Zhejiang University, China
文摘A displacement sensor based on the fiber Fabry-Perot (F-P) cavity was proposed in this paper. Theoretical and experimental analyses were presented. Displacement resolution was demonstrated by spectrum-domain experiments to obtain the dynamic range of the F-P sensor, and a piezoelectric crystal unit (PZT) was used as the driver. The output signal was modulated by a piezoelectric ceramic ring and demodulated by a phase-locked oscillator. The experimental results show that the displacement resolution of the F-P sensor is less than 5 nm and the dynamic range is more than 100 μm. As acceleration is the second-order differential of displacement, an accelerometer model was proposed using the finite element method (FEM) nd ANSYS software.
文摘The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.
基金supported by the National Natural Science Foundation of China(Nos.61575170 and 61605168)the State Scholarship Fund of China(No.201708130199)+1 种基金the Key Basic Research Program of Hebei Province(No.17961701D)"Xin Rui Gong Cheng" Talent Project of Yanshan University
文摘Based on the principle of Fabry-Perot (F-P) interference, a new type of optical fiber curvature sensor is presented,which is fabricated by single-mode fiber(SMF), ceramic tube and double-cladding fiber (DCF). And the curvature sensing properties are analyzed, and the double-peak method is used to demodulate the cavity length. The experimental results show that the F-P interference spectrum shifts toward long wavelengths with increasing the curvature. And the sensors are placed in different positions on the cantilever to get their different curvature sensitivities. Smaller initial cavity length gives greater sensor sensitivity. The best curvature sensitivity is achieved as 2 554.53 pm/m^(-1) in 0.71—1.18 m^(-1). By demodulating the length of the F-P cavity, the cavity length of sensor 4 is changed by 0.08 mm. Therefore, the sensor has some potential for measure the small displacement.
基金Supported by Creative Foundation of Wuhan National Laboratory for Optoelectronics(No Z080007).
文摘A simple and convenient terahertz wavemeter based on a Fabry-Perot interferometer (FPI) is presented.The interferometer is composed of two identical Ge etalons,which act as high-reflectance mirrors for terahertz waves.The transmission characteristics of the Ge FPI are analyzed using multiple-beam interference theory.The theoretical finesse of the FPI,defined as a ratio of 2π to the phase halfwidth of the transmission fringes,is larger than 12.5.Here,the wavemeter is used to measure the wavelengths of an optically pumped NH3 terahertz laser.The experimental results indicate that the measuring uncertainties are within ±1%.Higher accuracy can be expected if the power or pulse energy of the terahertz source is more stable.
文摘A hybrid optical bistable system of a plasma in a Fabry-Perot interferometer driven by a single-mode cw laser is proposed.The general expressions of the mirvimum change of the electron density for optical bistabili.ty and the changes of electron density at the"on"and"off"points of the optical bistabiIity are obtained theoretically,The necessary data for the design of the optical bistability in infrared to mm-Dave region are given.
文摘Modulation degree of refractive index is an important parameter for information storage in photorefractive materials. Using the relationship between the refractive index and the wavelengths of laser and the order of interference, we introduce a new method to measure the modulation degree of refractive index in photorefractive materials through detecting the shift of the interference fringe in a fiber Fabry-Perot interferometer with a CCD. The measurement precision is also analyzed. With this method, the modulation degree of refractive index in our prepared SCLP/E7/C 60 photorefractive polymer is measured for different external voltages and the external voltage corresponding to the maximal modulation degree of refractive index is reported. The dynamic change of refractive index in the SCLP/E7/C 60 is also studied, which will be helpful to understand the reaction mechanism of photochemistry in the material.
基金supported by the Key Project of Natural Science Foundation of China under Grant No. 60537040the Natural Science Foundation Project of CQ CSTC under Grant No. 2007BB3125
文摘This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including acetone and ethanol at room temperature. The sensitivity for measurement of refractive index change of ethanol is 1138 nm/RIU at the wavelength of 1550 nm. In addition, the sensor fabrication is simple including only cleaving, splicing, and etching. The signal is stable with high visibility. Therefore, it provides a valuable tool in biological and chemical applications.
文摘Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer(EFPI)have been extensively applied in various industrial and biomedical fields.In this paper,some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique,diaphragm-based EFPI sensors,and white light interference technology have been reviewed.Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced.Signal demodulation algorithms based on the cross correlation and mean square error(MSE)estimation have been proposed for retrieving the cavity length of EFPI.Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out.For downhole monitoring,an EFPI and a fiber Bragg grating(FBG)cascade multiplexing fiber-optic sensor system has been developed,which can operate in temperature 300℃with a good long-term stability and extremely low temperature cross-sensitivity.Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection.Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.
文摘A novel scheme is proposed to transform a Gaussian optical pulse to a millimeter-wave (mm-wave) frequency modulation pulse by using a Fabry-Perot interferometer (FPI) for radio-over-fiber (ROF) system. It is shown that modulation frequency of mm-wave is determined by the optical path of the Fabry-Perot (F-P) cavity, and amplitude decay time and energy transfer efficiency axe related to the reflectivity of the F-P cavity mirror. The effect of pulse train extension on inter-symbol interference is also discussed.
文摘A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 p.m to 140 p.m. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of 2/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.
文摘A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/℃ to 0.89 pm/℃, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.
文摘In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement. The usefulness of the interferometer is demonstrated by simulations and experiments.
基金This work was funded by the National Science Foundation of China(NCSF)(Grant No.51875091)the Study and Application of Full-model Impact Dynamic Fretting Damage Test System in the Extreme Environment(Grant No.51627806)+3 种基金Research on Application of Optical Fiber Sensing in Nuclear Power(Grant No.180046)Optical Fiber Sensing and Processing Prototype for Nuclear Field Key Parameter Measurement(Grant No.191091)Data Acquisition and Post-processing Software Development for Integrated Fiber Optic Sensors(Grant No.190167)the State 111 Project(Grant No.B14039).
文摘The sensing characteristics of irradiated fiber Bragg gratings(FBGs)and Fabry-Perot interferometers(FPIs)were investigated under a 2MGy dose of gamma radiation.The study found that the pressure sensitivity of FP sensors after irradiation was stable,while the temperature sensitivity of FBG sensors was unstable,and both wavelengths displayed a shift.These findings offer the possibility for the application of FP pressure sensors in the gamma radiation environments,and FBG sensors require further research to be suitable for application in the nuclear radiation environments.
文摘A simple nanostrain direct current (DC) measurement system based on a chirped Bragg grating Fabry-Perot (FP) structure is presented. The FP cavity, formed between the chirped fiber Bragg grating (CFBG) and the fiber end face, presents an aperiodic behavior due to the CFBG. A laser located in the fringe pattern slope is used to interrogate the sensing head. The optical power parameter is analyzed when strain is applied, for long and short period fringe pattern wavelengths, and sensitivities of-2.87 μW/με and-5.48μW/με are respectively obtained. This configuration presents a resolution of 70 ε.
基金This work was supported by the National Nature Science Foundation of China (No. 10174025 and No.10134020).
文摘Generally, a confocal Fabry-Perot interferometer is only able to detect the out-of-plane component of a displacement field; while the in-plane component often has the information about the material which cannot be found in this out-of-plane component. In this paper, based on a confocal Fabry-Perot interferometer set-up for detecting the out-of-plane component of a laser generated acoustic field, a technique is developed to detect both the out-of-plane and in-plane displacement components simultaneously with a novel two-channel confocal Fabry-Perot interferometer.
文摘This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot interferometers and fiber gratings.
基金This work is supported by the Nature Science Foundation Project of CQ CSTC under Grant No.cstc2012jjA4007. Assistances and good suggestions of Associate Prof. M. Deng in Chongqing University are appreciated.
文摘We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/με. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.62025505 and 62061136002).
文摘In this paper,a theoretical analysis of how the excitation conditions affect the sapphire fiber Fabry-Perot interferometer(SFPI)visibility was performed.The conditions were considered,in which an SFPI was excited by a single-mode fiber(SMF),a multimode fiber(MMF),and a fiber collimator.The finite difference method(FDM)was used to realize the numerical solution of the modal electric fields,and then,the modal excited distributions in the sapphire fiber and the SFPI visibility were calculated.The results showed that different numbers of modes were excited in sapphire fibers under different excitation conditions and finally affected the fringe visibility of the SFPI.The fiber collimator excited the fewest modes and the visibility remained at the highest level.Finally,an experiment was performed,and the experimental results agreed well with the theoretical results.
基金supported by the National Natural Science Foundation of China (40890165,40921063 and 40911120063)the National Large-Scale Scientific Project "Meridian Project"the Specialized Research Fund for State Key Laboratories
文摘A Fabry-Perot interferometer,funded by the Meridian Project in China,was deployed at the Xinglong station(40.2°N,117.4°E) of the National Astronomical Observatories in Hebei Province,China.The instrument has been operating since April 2010,measuring mesospheric and thermospheric winds.The first observational data of winds at three heights in the mesosphere and thermosphere were analyzed,demonstrating the capacity of this instrument to aid basic scientific research.The wavelengths of three airglow emissions were OH892.0,OI 557.7,and OI 630.0 nm,which corresponded to heights of 87,98,and 250 km,respectively.Three 38-day data sets of horizontal winds,from April 5,2010 to May 12,2010,show clear day-to-day variations at the same height.The minimum and maximum meridional winds at heights of 87,98,and 250 km were-16.5 to 8.7 m/s,-24.4 to 15.9 m/s,and-43.6 to 1.5 m/s.Measurements of zonal winds were-5.4 to 7.6 m/s,2.3 to 23.0 m/s,and-22.6 to 49.3 m/s.The average data from the observations was consistent with the data from HWM93.The wind data at heights of 87 and 98 km suggest a semi-diurnal oscillation,clearly consistent with HWM93 results.Conversely there was a clear discrepancy between the observations and the model at 250 km.In general,this Fabry-Perot interferometer is a useful ground-based instrument for measuring mesospheric and thermospheric winds at middle latitudes.