We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer...We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer graphene oxide sheets can be chemically reduced by HNO3 and HI to form a highly conductive graphene film on a substrate at lower temperature. The reduced graphene oxide sheets show a high conductivity sheet with resistance of 476Ω/sq and transmittance of 76% at 550nm (6 layers). The technique used to produce the transparent conductive graphene thin film is facile, inexpensive, and can be tunable for a large area production applied for electronics or touch screens.展开更多
In this paper,a lifted Haar transform(LHT)image compression optical chip has been researched to achieve rapid image compression.The chip comprises 32 same image compression optical circuits,and each circuit contains a...In this paper,a lifted Haar transform(LHT)image compression optical chip has been researched to achieve rapid image compression.The chip comprises 32 same image compression optical circuits,and each circuit contains a 2×2 multimode interference(MMI)coupler and aπ/2 delay line phase shifter as the key components.The chip uses highly borosilicate glass as the substrate,Su8 negative photoresist as the core layer,and air as the cladding layer.Its horizontal and longitudinal dimensions are 8011μm×10000μm.Simulation results present that the designed optical circuit has a coupling ratio(CR)of 0:100 and an insertion loss(IL)of 0.001548 d B.Then the chip is fabricated by femtosecond laser and testing results illustrate that the chip has a CR of 6:94 and an IL of 0.518 d B.So,the prepared chip possesses good image compression performance.展开更多
The coronavirus disease 2019(COVID-19)pandemic has led to a great demand on the personal protection products such as reusable masks.As a key raw material for masks,meltblown fabrics play an important role in rejection...The coronavirus disease 2019(COVID-19)pandemic has led to a great demand on the personal protection products such as reusable masks.As a key raw material for masks,meltblown fabrics play an important role in rejection of aerosols.However,the electrostatic dominated aerosol rejection mechanism of meltblown fabrics prevents the mask from maintaining the desired protective effect after the static charge degradation.Herein,novel reusable masks with high aerosols rejection efficiency were fabricated by the introduction of spider-web bionic nanofiber membrane(nano cobweb-biomimetic membrane).The reuse stability of meltblown and nanofiber membrane mask was separately evaluated by infiltrating water,75%alcohol solution,and exposing under ultraviolet(UV)light.After the water immersion test,the filtration efficiency of meltblown mask was decreased to about 79%,while the nanofiber membrane was maintained at 99%.The same phenomenon could be observed after the 75%alcohol treatment,a high filtration efficiency of 99%was maintained in nanofiber membrane,but obvious negative effect was observed in meltblown mask,which decreased to about 50%.In addition,after long-term expose under UV light,no filtration efficiency decrease was observed in nanofiber membrane,which provide a suitable way to disinfect the potential carried virus.This work successfully achieved the daily disinfection and reuse of masks,which effectively alleviate the shortage of masks during this special period.展开更多
To reduce the cost and achieve high diffraction efficiency, a modified moir@ technique for fabricating a large- aperture multi-level Fresnel membrane optic by a novel design of alignment marks is proposed. The modifie...To reduce the cost and achieve high diffraction efficiency, a modified moir@ technique for fabricating a large- aperture multi-level Fresnel membrane optic by a novel design of alignment marks is proposed. The modified moire fringes vary more sensitively with the actual misalignment. Hence, the alignment accuracy is significantly improved. Using the proposed method, a 20 μm thick, four-level Fresnel diffractive polyimide membrane optic with a 200 mm diameter is made, which exhibits over 62% diffraction efficiency into the +1 order, and an efficiency root mean square of 0.051.展开更多
There was a long history of releasing various monocrystalline semiconductor structures from their hosting substrates to form“freestanding”structures,in order to change the substrates and for other special purposes.T...There was a long history of releasing various monocrystalline semiconductor structures from their hosting substrates to form“freestanding”structures,in order to change the substrates and for other special purposes.The release was achieved by breaking the bonds between the film and the substrate,through methods such as forming interfacial gas bubbles(“smart-cut”technology for fabricating semiconductor-on-insulator wafers)or chemical etching(selectively etching epitaxial AlAs underlayer for fabricating GaAs-on-silicon photonic devices).The exfoliation of layered van der Waals materials in recent decades also produced another class of freestanding monocrystalline materials—twodimensional(2D)materials.In addition to changeable substrates,being freestanding also allowed unique methods to manipulate the 2D materials;for example,transferring them on flexible substrates and directly stretching them controls the strain in their lattice,as well as their strain-dependent physical properties.展开更多
The accretion of the Panama-ChocóBlock to the South American Plate partially drove the geological setting of the northern Andes.This event occurred in different collisional stages that are recorded in Oligocene-m...The accretion of the Panama-ChocóBlock to the South American Plate partially drove the geological setting of the northern Andes.This event occurred in different collisional stages that are recorded in Oligocene-middle Miocene deformed rocks of the inter-Andean valley between the Western and Central Cordilleras of Colombia.However,uncertainty remains about the age of the latest accretionary phases of the Panama-ChocóBlock.Poorly studied late Miocene volcanic rocks within the northern inter-Andean valley may provide key information to constrain the temporality of that final collision.Here,we study the deformational features of the~12-6 Ma extrusive rocks of the Combia Volcanic Province located in the northwestern Andes(Colombia).We present anisotropy of magnetic susceptibility(AMS)data for pyroclastic and volcanic rocks within the AmagáBasin,an inter-Andean depression with Oligocene-middle Miocene sedimentary rocks that recorded NW-SE compression and NE-SW simple shear caused by the Panama-ChocóBlock collision.We identified that the magnetic fabrics of the extrusive rocks of the Combia Volcanic Province reveal flow directions that indicate the occurrence of ancient volcanoes in the central axis of the AmagáBasin.Some of these fabrics do not contain any deformational features,whereas others record the same structural regime as the Oligocene-middle Miocene sedimentary rocks.We infer that variations in the intensity of the deformation promoted late Miocene local fault reactivations that,in contrast to the Oligocene-middle Miocene deformational events,did not affect the entire AmagáBasin.Age differences among the studied sections can also explain the different deformational patterns identified in the basin.Both interpretations suggest that the most significant collisional events of the Panama-ChocóBlock occurred in the Oligocene-middle Miocene,whereas the formation of the Combia Volcanic Province may have either followed or coincided with the latest stages of the accretion.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined sp...Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.展开更多
Two-dimensional(2D)materials show great potential as novel membrane materials due to their atomic thickness and periodic pore structure.Currently,free-standing membranes based on 2D materials open up new avenues for u...Two-dimensional(2D)materials show great potential as novel membrane materials due to their atomic thickness and periodic pore structure.Currently,free-standing membranes based on 2D materials open up new avenues for ultra-fast and highly selective separation.With the absence of porous substrates,free-standing membranes offer shortened transport paths for efficient mass transfer.The interfacial defects between the substrate and selective layer are eliminated to alleviate the internal membrane fouling,enabling the intact structure for precise separation.Hence,this review aims to outline the superiority of 2D material-based free-standing membranes for selective separation applications.Free-standing 2D material membranes composed of the most representative graphenebased materials,MXene,covalent organic framework(COF),metal organic framework(MOF),and hydrogen-bonded organic framework(HOF)are summarized with the discussion on the influence of substrate on their structural properties.The separation performance enhancement strategies in regard to the 2D material,membrane structure,and mechanical properties are examined.Finally,we propose several critical challenges and perspectives in terms of pore size control,mechanical strength improvement,understanding the underlying mass transfer mechanism,issues related to membrane fabrication optimization,scale production,and separation application versatility.This review will provide researchers with practical guidelines for advancing free-standing 2D material membranes for future selective separation applications.展开更多
The next-generation RAN,known as Open Radio Access Network(ORAN),allows for several advantages,including cost-effectiveness,network flexibility,and interoperability.Now ORAN applications,utilising machine learning(ML)...The next-generation RAN,known as Open Radio Access Network(ORAN),allows for several advantages,including cost-effectiveness,network flexibility,and interoperability.Now ORAN applications,utilising machine learning(ML)and artificial intelligence(AI)techniques,have become standard practice.The need for Federated Learning(FL)for ML model training in ORAN environments is heightened by the modularised structure of the ORAN architecture and the shortcomings of conventional ML techniques.However,the traditional plaintext model update sharing of FL in multi-BS contexts is susceptible to privacy violations such as deep-leakage gradient assaults and inference.Therefore,this research presents a novel blockchain-assisted improved cryptographic privacy-preserving federated learning(BICPPFL)model,with the help of ORAN,to safely carry out federated learning and protect privacy.This model improves on the conventional masking technique for sharing model parameters by adding new characteristics.These features include the choice of distributed aggregators,validation for final model aggregation,and individual validation for BSs.To manage the security and privacy of FL processes,a combined homomorphic proxy-reencryption(HPReE)and lattice-cryptographic method(HPReEL)has been used.The upgraded delegated proof of stake(Up-DPoS)consensus protocol,which will provide quick validation of model exchanges and protect against malicious attacks,is employed for effective consensus across blockchain nodes.Without sacrificing performance metrics,the BICPPFL model strengthens privacy and adds security layers while facilitating the transfer of sensitive data across several BSs.The framework is deployed on top of a Hyperledger Fabric blockchain to evaluate its effectiveness.The experimental findings prove the reliability and privacy-preserving capability of the BICPPFL model.展开更多
The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution an...The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution and short wavelength.Efficient and compact 193 nm DUV laser source thus becomes a hot research area.Currently,193 nm Ar F excimer gas laser is widely employed in DUV lithography systems and serves as the enabling technology for 7 and 5 nm semiconductor fabrication.展开更多
Various yarn-shaped flexible strain sensors have recently been developed.However,research is lacking on additive manufacturing for smart clothing for integrating yarn sensors with commercial garments.Herein,a strain-s...Various yarn-shaped flexible strain sensors have recently been developed.However,research is lacking on additive manufacturing for smart clothing for integrating yarn sensors with commercial garments.Herein,a strain-sensing yarn is sewn into a piece of fabric through a novel stitching technique,and the influence of the stitching method and needle pitch on the sensing performance is investigated using finite element analysis(FEA).The sensing performance could be improved when the sensing yarn is self-locked in the fabric at the needle eyes,and the needle pitch was reduced to 0.5 cm,which is attributed to the enhanced stress and strain concentration.Meanwhile,the composite sensing fabric featured outstanding performance,including a low detection limit(0.1%),rapid response(280 ms),excellent durability(10000 cycles),and high stability(negligible drift and frequency independence).In addition,the remarkable wear resistance,washability,and anti-interference to ambient humidity and perspiration were obtained.Therein,the optimal stitch trace lengths of sensing yarn for detecting elbow motion,breathing,and heartbeats are discussed.Finally,a smart clothing system composed of smart clothing,data acquisition unit,and mobile APP was developed to simultaneously detect human movement and physiological signals.This work provides a reference to produce intelligent garments based on yarn sensors for health monitoring.展开更多
Three-dimensional(3D)printing,also known as additive manufacturing(AM),has undergone a phase of rapid development in the fabrication of customizable and high-precision parts.Thanks to the advancements in 3D printing t...Three-dimensional(3D)printing,also known as additive manufacturing(AM),has undergone a phase of rapid development in the fabrication of customizable and high-precision parts.Thanks to the advancements in 3D printing technologies,it is now a reality to print cells,growth factors,and various biocompatible materials altogether into arbitrarily complex 3D scaffolds with high degree of structural and functional similarities to the native tissue environment.Additionally,with overpowering advantages in molding efficiency,resolution,and a wide selection of applicable materials,optical 3D printing methods have undoubtedly become the most suitable approach for scaffold fabrication in tissue engineering(TE).In this paper,we first provide a comprehensive and up-to-date review of current optical 3D printing methods for scaffold fabrication,including traditional extrusion-based processes,selective laser sintering,stereolithography,and two-photon polymerization etc.Specifically,we review the optical design,materials,and representative applications,followed by fabrication performance comparison.Important metrics include fabrication precision,rate,materials,and application scenarios.Finally,we summarize and compare the advantages and disadvantages of each technique to guide readers in the optics and TE communities to select the most fitting printing approach under different application scenarios.展开更多
A method for fabricating three-dimensional (3D) photonic crystals (PhCs) easily and simply, by using a visible light (- 532 nm) to pass one triangular pyramid to form non-coplanar multi-beam interference, named ...A method for fabricating three-dimensional (3D) photonic crystals (PhCs) easily and simply, by using a visible light (- 532 nm) to pass one triangular pyramid to form non-coplanar multi-beam interference, named laser interference etching technique, is reported. In the experiment, we exposed a 9-μm-thick photo- resist on the silicon substrate with exposure intensities of 150, 180, and 220 mJ/cm^2, and produced the periodical nanostructures. Through varying a common angle in the triangular pyramid, other interference patterns can be obtained to fabricate various PhCs.展开更多
Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications.As a versatile approach,ultrafast laser ablation has been widely studied for surface...Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications.As a versatile approach,ultrafast laser ablation has been widely studied for surface micro/nano structuring.Increasing research eforts in this feld have been devoted to gaining more control over the fabrication processes to meet the increasing need for creation of complex structures.In this paper,we focus on the in-situ deposition process following the plasma formation under ultrafast laser ablation.From an overview perspective,we frstly summarize the diferent roles that plasma plumes,from pulsed laser ablation of solids,play in diferent laser processing approaches.Then,the distinctive in-situ deposition process within surface micro/nano structuring is highlighted.Our experimental work demonstrated that the in-situ deposition during ultrafast laser surface structuring can be controlled as a localized micro-additive process to pile up secondary ordered structures,through which a unique kind of hierarchical structure with fort-like bodies sitting on top of micro cone arrays were fabricated as a showcase.The revealed laser-matter interaction mechanism can be inspiring for the development of new ultrafast laser fabrication approaches,adding a new dimension and more fexibility in controlling the fabrication of functional surface micro/nano structures.展开更多
Hyperledger Fabric是一个主流的联盟链平台,当面临多笔并发执行且相互关联的交易时,现有架构容易生成大量无效交易,这严重降低了系统的有效交易处理能力。为了解决这一问题,提出一种融合映射与有向无环图(DAG)的冲突消除机制—FabricIM...Hyperledger Fabric是一个主流的联盟链平台,当面临多笔并发执行且相互关联的交易时,现有架构容易生成大量无效交易,这严重降低了系统的有效交易处理能力。为了解决这一问题,提出一种融合映射与有向无环图(DAG)的冲突消除机制—FabricIMD(Fabric integrated with map and DAG)。该机制在背书节点处通过映射识别交易间依赖关系,并使用有向无环图对此关系进行构建,以调整交易背书顺序,从而有效避免了交易冲突现象的出现。实验证明,当存在多笔相互关联的并发交易时,FabricIMD机制能显著减少因交易冲突导致的无效交易。随着交易间冲突程度的变化,系统有效交易吞吐量提升了15.68%~96.08%。此外,在处理无关联的并发交易时,引入该机制并未对系统性能造成显著影响。综上,FabricIMD机制在避免交易冲突现象出现的同时提高了系统有效交易吞吐量,减少了无效交易数量。展开更多
基金Supported by the Basic Research Program of Nanjing University of Posts and Telecommunications under Grant No NY212002the Innovative Research Team in University under Grant No IRT1148the 2014 Shuangchuang Program of Jiangsu Province
文摘We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer graphene oxide sheets can be chemically reduced by HNO3 and HI to form a highly conductive graphene film on a substrate at lower temperature. The reduced graphene oxide sheets show a high conductivity sheet with resistance of 476Ω/sq and transmittance of 76% at 550nm (6 layers). The technique used to produce the transparent conductive graphene thin film is facile, inexpensive, and can be tunable for a large area production applied for electronics or touch screens.
基金the Natural Science Foundation of Hubei Province(No.2017CFB685)Hubei University of Technology"Advanced Manufacturing Technology and Equipment"Collaborative Innovation Center Open Research Fund(Nos.038/1201501 and 038/1201803)the College-level Project of Hubei University of Technology(Nos.4201/01758,4201/01802,4201/01889,and 4128/21025)。
文摘In this paper,a lifted Haar transform(LHT)image compression optical chip has been researched to achieve rapid image compression.The chip comprises 32 same image compression optical circuits,and each circuit contains a 2×2 multimode interference(MMI)coupler and aπ/2 delay line phase shifter as the key components.The chip uses highly borosilicate glass as the substrate,Su8 negative photoresist as the core layer,and air as the cladding layer.Its horizontal and longitudinal dimensions are 8011μm×10000μm.Simulation results present that the designed optical circuit has a coupling ratio(CR)of 0:100 and an insertion loss(IL)of 0.001548 d B.Then the chip is fabricated by femtosecond laser and testing results illustrate that the chip has a CR of 6:94 and an IL of 0.518 d B.So,the prepared chip possesses good image compression performance.
基金the National Key Research&Development Program of China(2018YFE0203500)the National Natural Science Foundation of China(21921006,21878148)the Key Industrial Research and Development International Cooperation Project(BZ2018004)。
文摘The coronavirus disease 2019(COVID-19)pandemic has led to a great demand on the personal protection products such as reusable masks.As a key raw material for masks,meltblown fabrics play an important role in rejection of aerosols.However,the electrostatic dominated aerosol rejection mechanism of meltblown fabrics prevents the mask from maintaining the desired protective effect after the static charge degradation.Herein,novel reusable masks with high aerosols rejection efficiency were fabricated by the introduction of spider-web bionic nanofiber membrane(nano cobweb-biomimetic membrane).The reuse stability of meltblown and nanofiber membrane mask was separately evaluated by infiltrating water,75%alcohol solution,and exposing under ultraviolet(UV)light.After the water immersion test,the filtration efficiency of meltblown mask was decreased to about 79%,while the nanofiber membrane was maintained at 99%.The same phenomenon could be observed after the 75%alcohol treatment,a high filtration efficiency of 99%was maintained in nanofiber membrane,but obvious negative effect was observed in meltblown mask,which decreased to about 50%.In addition,after long-term expose under UV light,no filtration efficiency decrease was observed in nanofiber membrane,which provide a suitable way to disinfect the potential carried virus.This work successfully achieved the daily disinfection and reuse of masks,which effectively alleviate the shortage of masks during this special period.
基金supported by the National Natural Science Foundation of China under Grant No.11375175
文摘To reduce the cost and achieve high diffraction efficiency, a modified moir@ technique for fabricating a large- aperture multi-level Fresnel membrane optic by a novel design of alignment marks is proposed. The modified moire fringes vary more sensitively with the actual misalignment. Hence, the alignment accuracy is significantly improved. Using the proposed method, a 20 μm thick, four-level Fresnel diffractive polyimide membrane optic with a 200 mm diameter is made, which exhibits over 62% diffraction efficiency into the +1 order, and an efficiency root mean square of 0.051.
基金supported by the National Natural Science Foundation of China(NSFC)under grant no.62274150University of Science and Technology of China.
文摘There was a long history of releasing various monocrystalline semiconductor structures from their hosting substrates to form“freestanding”structures,in order to change the substrates and for other special purposes.The release was achieved by breaking the bonds between the film and the substrate,through methods such as forming interfacial gas bubbles(“smart-cut”technology for fabricating semiconductor-on-insulator wafers)or chemical etching(selectively etching epitaxial AlAs underlayer for fabricating GaAs-on-silicon photonic devices).The exfoliation of layered van der Waals materials in recent decades also produced another class of freestanding monocrystalline materials—twodimensional(2D)materials.In addition to changeable substrates,being freestanding also allowed unique methods to manipulate the 2D materials;for example,transferring them on flexible substrates and directly stretching them controls the strain in their lattice,as well as their strain-dependent physical properties.
基金supported financially by the National Natural Science Foundation of China(Grants W2433104 to V.A.P.and 42225402 to J.L.)the China Postdoctoral Science Foundation(Grant 2024M753205 to V.A.P.)+2 种基金the Institute of Geology and Geophysics of the Chinese Academy of Sciences(International Fellowship for Postdoctoral Researchers,Grant 2025PD02 to V.A.P.)an association between ECOS-NORD(France)and Colciencias/Icetex(Colombia)(Grant C12U01 to M.I.M.)Part of this project was developed under a junior fellowship scheme of Colciencias(Colombia)(Grant 706-2015 to V.A.P.),which also supported the undergraduate final project of A.T.
文摘The accretion of the Panama-ChocóBlock to the South American Plate partially drove the geological setting of the northern Andes.This event occurred in different collisional stages that are recorded in Oligocene-middle Miocene deformed rocks of the inter-Andean valley between the Western and Central Cordilleras of Colombia.However,uncertainty remains about the age of the latest accretionary phases of the Panama-ChocóBlock.Poorly studied late Miocene volcanic rocks within the northern inter-Andean valley may provide key information to constrain the temporality of that final collision.Here,we study the deformational features of the~12-6 Ma extrusive rocks of the Combia Volcanic Province located in the northwestern Andes(Colombia).We present anisotropy of magnetic susceptibility(AMS)data for pyroclastic and volcanic rocks within the AmagáBasin,an inter-Andean depression with Oligocene-middle Miocene sedimentary rocks that recorded NW-SE compression and NE-SW simple shear caused by the Panama-ChocóBlock collision.We identified that the magnetic fabrics of the extrusive rocks of the Combia Volcanic Province reveal flow directions that indicate the occurrence of ancient volcanoes in the central axis of the AmagáBasin.Some of these fabrics do not contain any deformational features,whereas others record the same structural regime as the Oligocene-middle Miocene sedimentary rocks.We infer that variations in the intensity of the deformation promoted late Miocene local fault reactivations that,in contrast to the Oligocene-middle Miocene deformational events,did not affect the entire AmagáBasin.Age differences among the studied sections can also explain the different deformational patterns identified in the basin.Both interpretations suggest that the most significant collisional events of the Panama-ChocóBlock occurred in the Oligocene-middle Miocene,whereas the formation of the Combia Volcanic Province may have either followed or coincided with the latest stages of the accretion.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金supported by the National Key Research and Development Program of China(No.2024YFB3212901)National Natural Science Foundation of China(12072189)the Medicine and Engineering Interdisciplinary Research Fund of Shanghai Jiao Tong University(No.YG2025ZD05)。
文摘Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.
基金granted by Shandong Provincial Natural Science Foundation,China(No.ZR2023QB170)Guangxi First class Disciplines(Agricultural Resources and Environment),Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.ES202428)+3 种基金Shandong Excellent Young Scientists Fund Program(Overseas)(No.2024HWYQ-051)the National Natural Science Fund of China(No.22506033)Young Elite Scientists Sponsorship Program by CASTYoung Taishan Scholars Program of Shandong Province.
文摘Two-dimensional(2D)materials show great potential as novel membrane materials due to their atomic thickness and periodic pore structure.Currently,free-standing membranes based on 2D materials open up new avenues for ultra-fast and highly selective separation.With the absence of porous substrates,free-standing membranes offer shortened transport paths for efficient mass transfer.The interfacial defects between the substrate and selective layer are eliminated to alleviate the internal membrane fouling,enabling the intact structure for precise separation.Hence,this review aims to outline the superiority of 2D material-based free-standing membranes for selective separation applications.Free-standing 2D material membranes composed of the most representative graphenebased materials,MXene,covalent organic framework(COF),metal organic framework(MOF),and hydrogen-bonded organic framework(HOF)are summarized with the discussion on the influence of substrate on their structural properties.The separation performance enhancement strategies in regard to the 2D material,membrane structure,and mechanical properties are examined.Finally,we propose several critical challenges and perspectives in terms of pore size control,mechanical strength improvement,understanding the underlying mass transfer mechanism,issues related to membrane fabrication optimization,scale production,and separation application versatility.This review will provide researchers with practical guidelines for advancing free-standing 2D material membranes for future selective separation applications.
文摘The next-generation RAN,known as Open Radio Access Network(ORAN),allows for several advantages,including cost-effectiveness,network flexibility,and interoperability.Now ORAN applications,utilising machine learning(ML)and artificial intelligence(AI)techniques,have become standard practice.The need for Federated Learning(FL)for ML model training in ORAN environments is heightened by the modularised structure of the ORAN architecture and the shortcomings of conventional ML techniques.However,the traditional plaintext model update sharing of FL in multi-BS contexts is susceptible to privacy violations such as deep-leakage gradient assaults and inference.Therefore,this research presents a novel blockchain-assisted improved cryptographic privacy-preserving federated learning(BICPPFL)model,with the help of ORAN,to safely carry out federated learning and protect privacy.This model improves on the conventional masking technique for sharing model parameters by adding new characteristics.These features include the choice of distributed aggregators,validation for final model aggregation,and individual validation for BSs.To manage the security and privacy of FL processes,a combined homomorphic proxy-reencryption(HPReE)and lattice-cryptographic method(HPReEL)has been used.The upgraded delegated proof of stake(Up-DPoS)consensus protocol,which will provide quick validation of model exchanges and protect against malicious attacks,is employed for effective consensus across blockchain nodes.Without sacrificing performance metrics,the BICPPFL model strengthens privacy and adds security layers while facilitating the transfer of sensitive data across several BSs.The framework is deployed on top of a Hyperledger Fabric blockchain to evaluate its effectiveness.The experimental findings prove the reliability and privacy-preserving capability of the BICPPFL model.
基金supported by the National Natural Science Foundation of China(Grant Nos.62450006,62304217,62274157,62127807,62234011,62034008,62074142,62074140)Tianshan Innovation Team Program(Grant No.2022TSYCTD0005)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0880000)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant Nos.2023124,Y2023032)。
文摘The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution and short wavelength.Efficient and compact 193 nm DUV laser source thus becomes a hot research area.Currently,193 nm Ar F excimer gas laser is widely employed in DUV lithography systems and serves as the enabling technology for 7 and 5 nm semiconductor fabrication.
基金supported by the Qing Lan Projectthe Third-Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金the Science and Technology Guidance Project of China National Textile and Apparel Council(Grant No.2020102)the Primary Research&Development Plan of Jiangsu Province(Grant No.BE2019045)。
文摘Various yarn-shaped flexible strain sensors have recently been developed.However,research is lacking on additive manufacturing for smart clothing for integrating yarn sensors with commercial garments.Herein,a strain-sensing yarn is sewn into a piece of fabric through a novel stitching technique,and the influence of the stitching method and needle pitch on the sensing performance is investigated using finite element analysis(FEA).The sensing performance could be improved when the sensing yarn is self-locked in the fabric at the needle eyes,and the needle pitch was reduced to 0.5 cm,which is attributed to the enhanced stress and strain concentration.Meanwhile,the composite sensing fabric featured outstanding performance,including a low detection limit(0.1%),rapid response(280 ms),excellent durability(10000 cycles),and high stability(negligible drift and frequency independence).In addition,the remarkable wear resistance,washability,and anti-interference to ambient humidity and perspiration were obtained.Therein,the optimal stitch trace lengths of sensing yarn for detecting elbow motion,breathing,and heartbeats are discussed.Finally,a smart clothing system composed of smart clothing,data acquisition unit,and mobile APP was developed to simultaneously detect human movement and physiological signals.This work provides a reference to produce intelligent garments based on yarn sensors for health monitoring.
基金This work was supported by the Innovation and Technology Commission(ITC)(ITS/178/20FP)Centre for Perceptual and Interactive Intelligence(CPII)Ltd under the Innovation and Technology Fund.
文摘Three-dimensional(3D)printing,also known as additive manufacturing(AM),has undergone a phase of rapid development in the fabrication of customizable and high-precision parts.Thanks to the advancements in 3D printing technologies,it is now a reality to print cells,growth factors,and various biocompatible materials altogether into arbitrarily complex 3D scaffolds with high degree of structural and functional similarities to the native tissue environment.Additionally,with overpowering advantages in molding efficiency,resolution,and a wide selection of applicable materials,optical 3D printing methods have undoubtedly become the most suitable approach for scaffold fabrication in tissue engineering(TE).In this paper,we first provide a comprehensive and up-to-date review of current optical 3D printing methods for scaffold fabrication,including traditional extrusion-based processes,selective laser sintering,stereolithography,and two-photon polymerization etc.Specifically,we review the optical design,materials,and representative applications,followed by fabrication performance comparison.Important metrics include fabrication precision,rate,materials,and application scenarios.Finally,we summarize and compare the advantages and disadvantages of each technique to guide readers in the optics and TE communities to select the most fitting printing approach under different application scenarios.
基金The authors thank Department of Physics, Hong Kong University of Science and Technology for support.
文摘A method for fabricating three-dimensional (3D) photonic crystals (PhCs) easily and simply, by using a visible light (- 532 nm) to pass one triangular pyramid to form non-coplanar multi-beam interference, named laser interference etching technique, is reported. In the experiment, we exposed a 9-μm-thick photo- resist on the silicon substrate with exposure intensities of 150, 180, and 220 mJ/cm^2, and produced the periodical nanostructures. Through varying a common angle in the triangular pyramid, other interference patterns can be obtained to fabricate various PhCs.
基金support by the National Key Research and Development Program of China(No.2017YFB1104300)the National Natural Science Foundation of China(Nos.51575309 and 51210009)the Tsinghua University Initiative Scientifc Research Program(No.2018Z05JZY009).
文摘Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications.As a versatile approach,ultrafast laser ablation has been widely studied for surface micro/nano structuring.Increasing research eforts in this feld have been devoted to gaining more control over the fabrication processes to meet the increasing need for creation of complex structures.In this paper,we focus on the in-situ deposition process following the plasma formation under ultrafast laser ablation.From an overview perspective,we frstly summarize the diferent roles that plasma plumes,from pulsed laser ablation of solids,play in diferent laser processing approaches.Then,the distinctive in-situ deposition process within surface micro/nano structuring is highlighted.Our experimental work demonstrated that the in-situ deposition during ultrafast laser surface structuring can be controlled as a localized micro-additive process to pile up secondary ordered structures,through which a unique kind of hierarchical structure with fort-like bodies sitting on top of micro cone arrays were fabricated as a showcase.The revealed laser-matter interaction mechanism can be inspiring for the development of new ultrafast laser fabrication approaches,adding a new dimension and more fexibility in controlling the fabrication of functional surface micro/nano structures.
文摘Hyperledger Fabric是一个主流的联盟链平台,当面临多笔并发执行且相互关联的交易时,现有架构容易生成大量无效交易,这严重降低了系统的有效交易处理能力。为了解决这一问题,提出一种融合映射与有向无环图(DAG)的冲突消除机制—FabricIMD(Fabric integrated with map and DAG)。该机制在背书节点处通过映射识别交易间依赖关系,并使用有向无环图对此关系进行构建,以调整交易背书顺序,从而有效避免了交易冲突现象的出现。实验证明,当存在多笔相互关联的并发交易时,FabricIMD机制能显著减少因交易冲突导致的无效交易。随着交易间冲突程度的变化,系统有效交易吞吐量提升了15.68%~96.08%。此外,在处理无关联的并发交易时,引入该机制并未对系统性能造成显著影响。综上,FabricIMD机制在避免交易冲突现象出现的同时提高了系统有效交易吞吐量,减少了无效交易数量。