海冰密集度是描述海冰特征的重要参数,准确获取海冰密集度对研究全球气候变化具有重要意义。针对北极夏季海冰密集度反演精度较低的问题,本文通过对微波辐射传输模型中的海冰发射率和初始海冰密集度进行优化估算,改善了微波辐射传输模...海冰密集度是描述海冰特征的重要参数,准确获取海冰密集度对研究全球气候变化具有重要意义。针对北极夏季海冰密集度反演精度较低的问题,本文通过对微波辐射传输模型中的海冰发射率和初始海冰密集度进行优化估算,改善了微波辐射传输模型对夏季观测亮温的大气校正效果,从而优化被动微波海冰密集度的反演结果,本研究采用2019年6—9月的FY-3D/MWRI亮温数据,分别利用优化前和优化后的ASI2算法(ASI2和ASI2E),结合固定系点(FTP)与动态系点(DTP),分别获得了4套夏季北极海冰密集度数据(ASI2-FTP、ASI2-DTP、ASI2E-FTP、ASI2E-DTP),并利用14景MODIS影像对结果进行了精度验证。研究结果表明,本研究提出的优化方法可有效提高北极夏季海冰密集度的反演精度,其中该优化方法对基于固定系点的反演改进尤为明显,其优化后的均方根误差(root mean square error,ERMSE)由21.9%减小到15.43%,偏差(bias,|B_(bias)|)由-12.40%下降到-6.01%。4种反演方法中,基于动态系点的算法优化后(ASI2E-DTP)表现尤为明显,其E_(RMSE)和B_(bias)分别为14.33%和-4.53%。展开更多
The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precisio...The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.展开更多
The Hyperspectral Infrared Atmospheric Sounder-II(HIRAS-II)onboard China’s FungYun(FY)-3F meteorological satellite was launched in August 2023.This study presents the first attempt to retrieve the global carbon monox...The Hyperspectral Infrared Atmospheric Sounder-II(HIRAS-II)onboard China’s FungYun(FY)-3F meteorological satellite was launched in August 2023.This study presents the first attempt to retrieve the global carbon monoxide(CO)column from HIRAS-II/FY-3F spectra based on a newly established full-physics algorithm.The CO global columns derived from the HIRAS-II/FY-3F satellite are compared to measurements from the Infrared Atmospheric Sounding Interferometer(IASI)onboard Europe’s MetopB satellite,as both satellites have the same spectral range with a similar overpass time.The correlation coefficient between the IASI/Metop-B and HIRAS-II/FY-3F CO retrievals is about 0.8.The HIRAS-II/FY-3F satellite can capture well the regions with high CO values,e.g.,Africa,North America,and East Asia.The relative difference in the CO global column between HIRAS-II and IASI is 1.2±13.7(1)%,which is within their combined retrieval uncertainty.The CO plumes from the fire emissions in North America between 18 and 23 July 2024 were observed by the HIRAS-II/FY-3F satellite and consistent with the CAMS(Copernicus Atmosphere Monitoring Service)model simulations.Our results show that the HIRAS-II/FY-3F spectra are of good enough quality to provide quantitative observations of global CO column remote sensing observations.展开更多
文摘海冰密集度是描述海冰特征的重要参数,准确获取海冰密集度对研究全球气候变化具有重要意义。针对北极夏季海冰密集度反演精度较低的问题,本文通过对微波辐射传输模型中的海冰发射率和初始海冰密集度进行优化估算,改善了微波辐射传输模型对夏季观测亮温的大气校正效果,从而优化被动微波海冰密集度的反演结果,本研究采用2019年6—9月的FY-3D/MWRI亮温数据,分别利用优化前和优化后的ASI2算法(ASI2和ASI2E),结合固定系点(FTP)与动态系点(DTP),分别获得了4套夏季北极海冰密集度数据(ASI2-FTP、ASI2-DTP、ASI2E-FTP、ASI2E-DTP),并利用14景MODIS影像对结果进行了精度验证。研究结果表明,本研究提出的优化方法可有效提高北极夏季海冰密集度的反演精度,其中该优化方法对基于固定系点的反演改进尤为明显,其优化后的均方根误差(root mean square error,ERMSE)由21.9%减小到15.43%,偏差(bias,|B_(bias)|)由-12.40%下降到-6.01%。4种反演方法中,基于动态系点的算法优化后(ASI2E-DTP)表现尤为明显,其E_(RMSE)和B_(bias)分别为14.33%和-4.53%。
基金Supported by the National Key Research and Development Program of China(2022YFB3904803)。
文摘The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.
基金supported by the FengYun Application Pioneering Project (Grant No. FY-APP-2022.0502)the National Natural Science Foundation of China (42205140)the State Key Laboratory of Atmospheric Environment end Extreme Meteorology (Grant No. 2024QN04)
文摘The Hyperspectral Infrared Atmospheric Sounder-II(HIRAS-II)onboard China’s FungYun(FY)-3F meteorological satellite was launched in August 2023.This study presents the first attempt to retrieve the global carbon monoxide(CO)column from HIRAS-II/FY-3F spectra based on a newly established full-physics algorithm.The CO global columns derived from the HIRAS-II/FY-3F satellite are compared to measurements from the Infrared Atmospheric Sounding Interferometer(IASI)onboard Europe’s MetopB satellite,as both satellites have the same spectral range with a similar overpass time.The correlation coefficient between the IASI/Metop-B and HIRAS-II/FY-3F CO retrievals is about 0.8.The HIRAS-II/FY-3F satellite can capture well the regions with high CO values,e.g.,Africa,North America,and East Asia.The relative difference in the CO global column between HIRAS-II and IASI is 1.2±13.7(1)%,which is within their combined retrieval uncertainty.The CO plumes from the fire emissions in North America between 18 and 23 July 2024 were observed by the HIRAS-II/FY-3F satellite and consistent with the CAMS(Copernicus Atmosphere Monitoring Service)model simulations.Our results show that the HIRAS-II/FY-3F spectra are of good enough quality to provide quantitative observations of global CO column remote sensing observations.