Utilizing calcium aluminate(CaAlO)as a catalyst in lignocellulosic biomass pyrolysis offers dual advantages of cost saving and mitigating environmental pollution from industrial waste.This study employs kinetic analys...Utilizing calcium aluminate(CaAlO)as a catalyst in lignocellulosic biomass pyrolysis offers dual advantages of cost saving and mitigating environmental pollution from industrial waste.This study employs kinetic analysis to validate the catalytic effect of CaAlO on biomass pyrolysis.Thermalgravimetric analysis of walnut shell pyrolysis was conducted,incorporating CaAlO,CaO,and Al_(2)O_(3) additives to examine catalytic pyrolysis and gas release characteristics.The results reveal that CaAlO exhibits a catalytic effect similar to that of CaO and Al_(2)O_(3),suggesting its potential as an effective catalyst.Activation energies obtained without additive and with CaAlO,CaO,and Al_(2)O_(3) by Friedman method are 184,178,158,and 176 kJ·mol^(-1),while by Flynn-Wall-Ozawa(FWO)method are 186,179,160,177 kJ·mol^(-1).Finally,distributed activation energy model(DAEM)analysis was performed,and the obtained parameters were successfully coupled into three-dimensional numerical simulation with some simplifications in the DAEM integration to reduce calculation cost,showing its potential applicability in biomass pyrolysis investigation.展开更多
基金the financial support of the National Natural Science Foundation of China(22278432)National Key Research&Development Program of China(2022YFB3805602)Science Foundation of China University of Petroleum-Beijing(2462021BJRC001,2462021QNXZ007)。
文摘Utilizing calcium aluminate(CaAlO)as a catalyst in lignocellulosic biomass pyrolysis offers dual advantages of cost saving and mitigating environmental pollution from industrial waste.This study employs kinetic analysis to validate the catalytic effect of CaAlO on biomass pyrolysis.Thermalgravimetric analysis of walnut shell pyrolysis was conducted,incorporating CaAlO,CaO,and Al_(2)O_(3) additives to examine catalytic pyrolysis and gas release characteristics.The results reveal that CaAlO exhibits a catalytic effect similar to that of CaO and Al_(2)O_(3),suggesting its potential as an effective catalyst.Activation energies obtained without additive and with CaAlO,CaO,and Al_(2)O_(3) by Friedman method are 184,178,158,and 176 kJ·mol^(-1),while by Flynn-Wall-Ozawa(FWO)method are 186,179,160,177 kJ·mol^(-1).Finally,distributed activation energy model(DAEM)analysis was performed,and the obtained parameters were successfully coupled into three-dimensional numerical simulation with some simplifications in the DAEM integration to reduce calculation cost,showing its potential applicability in biomass pyrolysis investigation.