A two-dimensional numerical model is proposed to simulate the thermal discharge from a power plant in Jiangsu Province. The equations in the model consist of two-dimensional non-steady shallow water equations and ther...A two-dimensional numerical model is proposed to simulate the thermal discharge from a power plant in Jiangsu Province. The equations in the model consist of two-dimensional non-steady shallow water equations and thermal waste transport equations. Finite volume method (FVM) is used to discretize the shallow water equations, and flux difference splitting (FDS) scheme is applied. The calculated area with the same temperature increment shows the effect of thermal discharge on sea water. A comparison between simulated results and the experimental data shows good agreement. It indicates that this method can give high precision in the heat transfer simulation in coastal areas.展开更多
A three-dimensional infrared radiation code for exhaust system was developed by the finite volume method coupled with narrow band k-distribution in non-gray absorbing-emitting media.The final infrared signature had co...A three-dimensional infrared radiation code for exhaust system was developed by the finite volume method coupled with narrow band k-distribution in non-gray absorbing-emitting media.The final infrared signature had considered the atmosphere effect,and the simulation values were favorably consistent with testing ones.The results indicate that the relative errors considering the effect of atmosphere compared with that of the contrary condition reduce by 31%,it shows that when simulating the infrared radiation of the target which is received by the infrared detectors,even the calculation band is in atmospheric windows 3~5 μm,the effect of atmospheric transmission on infrared signature of the target should not be neglected.展开更多
Ionosphere is the layer of atmosphere which plays an important role both in space based navigation,positioning and communication systems and HF signals. The structure of the electron density is a function of spatio-te...Ionosphere is the layer of atmosphere which plays an important role both in space based navigation,positioning and communication systems and HF signals. The structure of the electron density is a function of spatio-temporal variables. The electrodynamic medium is also influenced with earth’s magnetic field, atmospheric chemistry and plasma flow and diffusion under earth’s gravitation. Thus, the unified dynamo equation for the ionosphere is a second order partial differential equation for quasi-static electric potential with variable spatial coefficients. In this study, the inhomogeneous and anisotropic nature of ionosphere that can be formulated as a divergence equation is solved numerically using Finite Volume Method for the first time. The ionosphere and the operators are discretized for the midlatitude region and the solution domain is investigated for Dirichlet type boundary conditions that are built in into the diffusion equation. The analysis indicates that FVM can be a powerful tool in obtaining parametric electrostatic potential distribution in ionosphere.展开更多
Extrusion is the key technology to manufacture aluminum profiles and involves complicate metal deformation coupled with temperature changes. The choice of numerical technique plays an important role and is related to ...Extrusion is the key technology to manufacture aluminum profiles and involves complicate metal deformation coupled with temperature changes. The choice of numerical technique plays an important role and is related to the accuracy and effectiveness of extrusion process analyses. In this paper, the extrusion processes of two complex aluminum profiles are simulated with FEM and FVM respectively. The merit and disadvantage of these two methods are analyzed. The finite element method exhibits higher calculation efficiency in the simulation of a lock catch extrusion process. However, due to frequent rezoning in simulation of complex extrusion process, sharp distortion of finite element mesh can decrease computational accuracy. Therefore the volume loss in FEM simulation is larger than that in FVM simulation by five percent. Based on Euler description, the finite volume method employs structured element mesh covering entire material flowing area, which makes it more robust in the simulation of complicate extrusion process. The deformation configuration with FVM is much smoother than that with FEM in the extrusion simulation of a thin-walled aluminum profile, although FVM requires more computation time.展开更多
This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme ...This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme is based upon the definition of modified governing equation derived from Maxwell’s equations considered the magnetization M. This paper shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by a real coded genetic algorithm approach. The parameters identification is performed by minimizing the mean squared error between experimental and simulated magnetic field curves. The calculated results are validated by experiences performed in an SST’s frame.展开更多
文摘A two-dimensional numerical model is proposed to simulate the thermal discharge from a power plant in Jiangsu Province. The equations in the model consist of two-dimensional non-steady shallow water equations and thermal waste transport equations. Finite volume method (FVM) is used to discretize the shallow water equations, and flux difference splitting (FDS) scheme is applied. The calculated area with the same temperature increment shows the effect of thermal discharge on sea water. A comparison between simulated results and the experimental data shows good agreement. It indicates that this method can give high precision in the heat transfer simulation in coastal areas.
文摘A three-dimensional infrared radiation code for exhaust system was developed by the finite volume method coupled with narrow band k-distribution in non-gray absorbing-emitting media.The final infrared signature had considered the atmosphere effect,and the simulation values were favorably consistent with testing ones.The results indicate that the relative errors considering the effect of atmosphere compared with that of the contrary condition reduce by 31%,it shows that when simulating the infrared radiation of the target which is received by the infrared detectors,even the calculation band is in atmospheric windows 3~5 μm,the effect of atmospheric transmission on infrared signature of the target should not be neglected.
文摘Ionosphere is the layer of atmosphere which plays an important role both in space based navigation,positioning and communication systems and HF signals. The structure of the electron density is a function of spatio-temporal variables. The electrodynamic medium is also influenced with earth’s magnetic field, atmospheric chemistry and plasma flow and diffusion under earth’s gravitation. Thus, the unified dynamo equation for the ionosphere is a second order partial differential equation for quasi-static electric potential with variable spatial coefficients. In this study, the inhomogeneous and anisotropic nature of ionosphere that can be formulated as a divergence equation is solved numerically using Finite Volume Method for the first time. The ionosphere and the operators are discretized for the midlatitude region and the solution domain is investigated for Dirichlet type boundary conditions that are built in into the diffusion equation. The analysis indicates that FVM can be a powerful tool in obtaining parametric electrostatic potential distribution in ionosphere.
基金Proiects(0452nm034, 0552nm041) supported by the Science and Technology Committee of Shanghai, China
文摘Extrusion is the key technology to manufacture aluminum profiles and involves complicate metal deformation coupled with temperature changes. The choice of numerical technique plays an important role and is related to the accuracy and effectiveness of extrusion process analyses. In this paper, the extrusion processes of two complex aluminum profiles are simulated with FEM and FVM respectively. The merit and disadvantage of these two methods are analyzed. The finite element method exhibits higher calculation efficiency in the simulation of a lock catch extrusion process. However, due to frequent rezoning in simulation of complex extrusion process, sharp distortion of finite element mesh can decrease computational accuracy. Therefore the volume loss in FEM simulation is larger than that in FVM simulation by five percent. Based on Euler description, the finite volume method employs structured element mesh covering entire material flowing area, which makes it more robust in the simulation of complicate extrusion process. The deformation configuration with FVM is much smoother than that with FEM in the extrusion simulation of a thin-walled aluminum profile, although FVM requires more computation time.
文摘This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme is based upon the definition of modified governing equation derived from Maxwell’s equations considered the magnetization M. This paper shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by a real coded genetic algorithm approach. The parameters identification is performed by minimizing the mean squared error between experimental and simulated magnetic field curves. The calculated results are validated by experiences performed in an SST’s frame.