Mango(Mangifera indica L.cv.‘Keitt’)is one of the core fruit delicacies produced by China.During the post-harvest storage span,the fungal pathogen colletotrichum gloeosporioides readily invades the fruits and leads ...Mango(Mangifera indica L.cv.‘Keitt’)is one of the core fruit delicacies produced by China.During the post-harvest storage span,the fungal pathogen colletotrichum gloeosporioides readily invades the fruits and leads to a significant overall yield loss.In recent years of development,the exploitation of naturally occurring fungitoxic compounds such as Sandalwood Essential Oil(SEO)has been useful in tackling various fungal species.This study demonstrates the potential of SEO as part of a storage protection strategy against C.gloeosporioides-induced postharvest anthracnose.SEO displayed a relatively higher mycelial growth inhibition rate when compared to various other essential oils.Furthermore,the Minimal Inhibitory Concentration(MIC),Minimum Fungicidal Concentration(MFC),and EC_(50)(Half maximal effective concentration)of SEO were determined to be 2000,2500,and 610.38μL/L,respectively.Moreover,the chitosan glutamate-SEO emulsion controlled the anthracnose spread for several days by multiple folds at½MIC,MIC,and 2 MIC concentrations.These results strongly support the potential for largescale production and application of SEO emulsions by agrochemical firms and post-harvest storage facilities handling Keitt mangoes.展开更多
The fungitoxicity of five Malagasy essential oils (Eos)<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">against</span><span styl...The fungitoxicity of five Malagasy essential oils (Eos)<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">against</span><span style="font-family:;" "=""> </span><i><span style="font-family:Verdana;">Colletotrichum asianum</span></i><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">was assessed in terms of conidial germination and mycelia</span><span style="font-family:Verdana;">l</span><span style="font-family:" color:red;"=""> </span><span style="font-family:Verdana;">growth. Their effect on defense-related compounds content, physicochemical properties</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">and anthracnose lesions</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">in mango fruits was also determined. Four of the tested </span><span style="font-family:Verdana;">Eos w</span></span><span style="font-family:Verdana;">ere</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> from </span><i><span style="font-family:Verdana;">Ravensara aromatica </span></i><span style="font-family:Verdana;">leaves,</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">and the last Eo was extracted from clove leaves. Their chemical compositions were then determined through GC-MS analysis and the active compound of the most fungitoxic Eo was determined by testing the toxicity of its major component to </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span></span><i><span style="font-family:;" "=""> </span></i><i><span style="font-family:Verdana;">asianum</span></i><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> s</span><span style="font-family:Verdana;">pore germination, mycelia</span><span style="font-family:Verdana;">l</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> growth and its ability to inhibit anthracnose development on mango fruits. The </span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> aromatica</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:;" "=""><span style="font-family:Verdana;">Eos tested were fungistatic to </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> asianum</span></i><span style="font-family:Verdana;">,</span></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:;" "=""><span style="font-family:Verdana;">whereas clove Eo was fungitoxic and the 4 chemotypes of </span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> aromatica</span></i><span style="font-family:Verdana;"> Eo exhibited variable inhibiting capabilities: </span></span><span style="font-family:Verdana;">1</span><span style="font-family:Verdana;">)</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">all tested doses of all Eos</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">(112.5 and 225</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L of air) were effective against</span><span style="font-family:;" "=""> </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:;" "=""><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> asianum </span></i><span style="font-family:Verdana;">mycelial growth (10</span></span><span style="font-family:Verdana;">% </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">100% inhibition) but doses of 225</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L were more inhibitory than those of</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">112.5</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L, </span><span style="font-family:Verdana;">2</span><span style="font-family:Verdana;">) Conidial germination was more resistant to Eos toxicity since only 225</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L of methyl eugenol</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">chemotype of </span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> aromatica</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">Eo, all tested doses of the sabinene</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">chemotype of </span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> aromatica</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">Eo and</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">clove Eo were found inhibitory toward conidial germination of </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i> <span style="font-family:Verdana;">asianum</span></i><span style="font-family:Verdana;">.</span></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">30</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L of sprayed clove Eoweretested on inoculated mangoes and were found to be effective against anthracnose development</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">without affecting the resorcinol content in mango peel and the physicochemical properties of mango pulp. Tests on the major components of clove Eo showed fungitoxic activities against mycelial growth and conidial germination of </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> asianum</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">similar to those of</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">clove Eo.</span>展开更多
This study was undertaken to explore new antifungal compounds from the methanolic extract of G. sinaicus. Two cardenolide compounds were isolated and identified by GC-MS as cardenolide glycoside, 15-hydroxy-3,4,5,6-de...This study was undertaken to explore new antifungal compounds from the methanolic extract of G. sinaicus. Two cardenolide compounds were isolated and identified by GC-MS as cardenolide glycoside, 15-hydroxy-3,4,5,6-dehydrocalotropin and cardenolide genin, 3,4,5,6-dehydrocalotropagenin. The antifungal activity of these compounds was assessed. Results revealed that both compounds showed pronounced fungicidal activity against both soil borne fungi, R. solani, F. oxysporium, and postharvest fungi, R. stolonifer, P. digtatum, compared to the standard fungicides, flutolanil and copper oxychloride, respectively. The ECs0 values of the cardenolide genin were 0.703, 13.63 and 4.22, 8.403 lag/mL forR. solani, F. oxysporium andR. stolonifer, P. digtatum respectively. On the other hand, the ECs0 values of the standard fungicide, flutolanil, were 9.49 and 61.22 ~tg/mL against R. solani and F. oxysporium. While the ECso values of copper oxychloride were 279.94 and 187.13 p.g/mL against R. stolonifer and P. digtatum, respectively. The results showed that cellulase, PME, PPO of the tested fungi was more sensitive than to cardenolide genin. The strong antifungal activity of cardenolide genin reported in this study indicated that has a potential to be used as fungicides.展开更多
基金funded by the Hainan Province Science and Technology Special Fund[grant number ZDKJ2021012]the National Key R&D Programof China[grant number 2023YFD2300801]received by Fei Qiaothe Ongoing Research Funding Program(ORF-2025-751),King Saud University,Riyadh,Saud Arabia.
文摘Mango(Mangifera indica L.cv.‘Keitt’)is one of the core fruit delicacies produced by China.During the post-harvest storage span,the fungal pathogen colletotrichum gloeosporioides readily invades the fruits and leads to a significant overall yield loss.In recent years of development,the exploitation of naturally occurring fungitoxic compounds such as Sandalwood Essential Oil(SEO)has been useful in tackling various fungal species.This study demonstrates the potential of SEO as part of a storage protection strategy against C.gloeosporioides-induced postharvest anthracnose.SEO displayed a relatively higher mycelial growth inhibition rate when compared to various other essential oils.Furthermore,the Minimal Inhibitory Concentration(MIC),Minimum Fungicidal Concentration(MFC),and EC_(50)(Half maximal effective concentration)of SEO were determined to be 2000,2500,and 610.38μL/L,respectively.Moreover,the chitosan glutamate-SEO emulsion controlled the anthracnose spread for several days by multiple folds at½MIC,MIC,and 2 MIC concentrations.These results strongly support the potential for largescale production and application of SEO emulsions by agrochemical firms and post-harvest storage facilities handling Keitt mangoes.
文摘The fungitoxicity of five Malagasy essential oils (Eos)<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">against</span><span style="font-family:;" "=""> </span><i><span style="font-family:Verdana;">Colletotrichum asianum</span></i><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">was assessed in terms of conidial germination and mycelia</span><span style="font-family:Verdana;">l</span><span style="font-family:" color:red;"=""> </span><span style="font-family:Verdana;">growth. Their effect on defense-related compounds content, physicochemical properties</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">and anthracnose lesions</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">in mango fruits was also determined. Four of the tested </span><span style="font-family:Verdana;">Eos w</span></span><span style="font-family:Verdana;">ere</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> from </span><i><span style="font-family:Verdana;">Ravensara aromatica </span></i><span style="font-family:Verdana;">leaves,</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">and the last Eo was extracted from clove leaves. Their chemical compositions were then determined through GC-MS analysis and the active compound of the most fungitoxic Eo was determined by testing the toxicity of its major component to </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span></span><i><span style="font-family:;" "=""> </span></i><i><span style="font-family:Verdana;">asianum</span></i><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> s</span><span style="font-family:Verdana;">pore germination, mycelia</span><span style="font-family:Verdana;">l</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> growth and its ability to inhibit anthracnose development on mango fruits. The </span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> aromatica</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:;" "=""><span style="font-family:Verdana;">Eos tested were fungistatic to </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> asianum</span></i><span style="font-family:Verdana;">,</span></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:;" "=""><span style="font-family:Verdana;">whereas clove Eo was fungitoxic and the 4 chemotypes of </span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> aromatica</span></i><span style="font-family:Verdana;"> Eo exhibited variable inhibiting capabilities: </span></span><span style="font-family:Verdana;">1</span><span style="font-family:Verdana;">)</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">all tested doses of all Eos</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">(112.5 and 225</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L of air) were effective against</span><span style="font-family:;" "=""> </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:;" "=""><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> asianum </span></i><span style="font-family:Verdana;">mycelial growth (10</span></span><span style="font-family:Verdana;">% </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">100% inhibition) but doses of 225</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L were more inhibitory than those of</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">112.5</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L, </span><span style="font-family:Verdana;">2</span><span style="font-family:Verdana;">) Conidial germination was more resistant to Eos toxicity since only 225</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L of methyl eugenol</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">chemotype of </span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> aromatica</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">Eo, all tested doses of the sabinene</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">chemotype of </span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> aromatica</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">Eo and</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">clove Eo were found inhibitory toward conidial germination of </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i> <span style="font-family:Verdana;">asianum</span></i><span style="font-family:Verdana;">.</span></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">30</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">μL/L of sprayed clove Eoweretested on inoculated mangoes and were found to be effective against anthracnose development</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">without affecting the resorcinol content in mango peel and the physicochemical properties of mango pulp. Tests on the major components of clove Eo showed fungitoxic activities against mycelial growth and conidial germination of </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> asianum</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">similar to those of</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">clove Eo.</span>
文摘This study was undertaken to explore new antifungal compounds from the methanolic extract of G. sinaicus. Two cardenolide compounds were isolated and identified by GC-MS as cardenolide glycoside, 15-hydroxy-3,4,5,6-dehydrocalotropin and cardenolide genin, 3,4,5,6-dehydrocalotropagenin. The antifungal activity of these compounds was assessed. Results revealed that both compounds showed pronounced fungicidal activity against both soil borne fungi, R. solani, F. oxysporium, and postharvest fungi, R. stolonifer, P. digtatum, compared to the standard fungicides, flutolanil and copper oxychloride, respectively. The ECs0 values of the cardenolide genin were 0.703, 13.63 and 4.22, 8.403 lag/mL forR. solani, F. oxysporium andR. stolonifer, P. digtatum respectively. On the other hand, the ECs0 values of the standard fungicide, flutolanil, were 9.49 and 61.22 ~tg/mL against R. solani and F. oxysporium. While the ECso values of copper oxychloride were 279.94 and 187.13 p.g/mL against R. stolonifer and P. digtatum, respectively. The results showed that cellulase, PME, PPO of the tested fungi was more sensitive than to cardenolide genin. The strong antifungal activity of cardenolide genin reported in this study indicated that has a potential to be used as fungicides.