Appropriate flowering time in rapeseed(Brassica napus L.)is vital for preventing losses from weather,diseases,and pests.However,the molecular basis of its regulation remains largely unknown.Here,a genome-wide associat...Appropriate flowering time in rapeseed(Brassica napus L.)is vital for preventing losses from weather,diseases,and pests.However,the molecular basis of its regulation remains largely unknown.Here,a genome-wide association study identifies BnaC09.FUL,a MADS-box transcription factor,as a promising candidate gene regulating flowering time in B.napus.BnaC09.FUL expression increases sharply in B.napus shoot apices near bolting.BnaC09.FUL overexpression results in early flowering,while BnaFUL mutation causes delayed flowering in B.napus.A zinc finger transcription factor,BnaC06.WIP2,is identified as an interaction partner of BnaC09.FUL,and BnaC06.WIP2 overexpression delays flowering in B.napus,with RNA sequencing revealing its influence on the expression of many flowering-associated genes.We further demonstrate that BnaC06.WIP2 directly represses the expression of BnaA05.SOC1,BnaC03.SOC1,BnaC04.SOC1,BnaC06.FT,BnaA06.LFY,BnaC07.FUL,BnaA08.CAL,and BnaC03.CAL and indirectly inhibits the expression of other flowering time-related genes.Genetic and molecular investigations highlight the antagonistic relationship between BnaC09.FUL and BnaC06.WIP2 in regulating the flowering time in B.napus through direct regulation of the expression of BnaC03.SOC1,BnaA08.CAL,and BnaC03.CAL.Overall,our findings provide a mechanism by which the BnaC09.FUL–BnaC06.WIP2 transcriptional regulatory module controls the flowering time in B.napus.展开更多
A general method in considering the core electromc correlation energies has been proposed and introduced into the standard Gaussian-2 (G2)[7] theory hy small post-Hartree-Fock calculations. In this papcr an additional...A general method in considering the core electromc correlation energies has been proposed and introduced into the standard Gaussian-2 (G2)[7] theory hy small post-Hartree-Fock calculations. In this papcr an additional MP2(FC)/6-31G(d) calculation over the G2 procedures is employed and examined in modihcation in modification to the flaw of Frozen-Core (FC) approximation of G2 vai eq:E(full)= E[MP2(full)/6-31G(d)]-E[MP2(FC)/6-31G(d)]where the MP2(full)/6-31G(d) cnergy has been obtaincd in the molefular gcometry optimizations. This energy, E(full), is directly added into the total G2 energy of a molecule in facilitating the effect of core electronic correlations for each molecule in chemical reactions. It has been shown that the over-all avcrage absolute deviation for the 125 reaction energies of the G2 test set (test set 1) is slightly reduced from 5.09 to 5.01 kJ, mol(-1) while for the 55 D0 values, which have been used for the derivation of the A coefficient of the empirical High-Level-Correction (HLC), it is also reduced from 4.99 [for both G2 and G2(COMPLETE)[8]]to 4.77 kJ, mol(-1). In addition, Iargcr crrors (greater than ±8.4 kJ. mol(-1) for the D0 energies are improved, especially for the largest error of the D0of SO2 This error is reduced from 21.3 to 15.4 kJ. mol(-1), in which the experimental geometry would further reduce it by 7.1kJ.mol(-1)[8].Another improvement is the absolute value of the A coefficient in HLC being reduced from 4.81 for G2 to 4.34 milli-hartrees which is believed to be useful in isolating the relationship between the HLC and the FC approximation.Modifications to the original G2 from this work is denoted as G2(fu 1) and thus the G2 (fu 1) total energy for a molecule isE[G2(fu 1)]= E[G2]+ E(full)with a new E[HLC] =0.19α- 4.34nβ milli-hartree.展开更多
Spectral conjugate gradient method is an algorithm obtained by combination of spectral gradient method and conjugate gradient method,which is characterized with global convergence and simplicity of spectral gradient m...Spectral conjugate gradient method is an algorithm obtained by combination of spectral gradient method and conjugate gradient method,which is characterized with global convergence and simplicity of spectral gradient method,and small storage of conjugate gradient method.Besides,the spectral conjugate gradient method was proved that the search direction at each iteration is a descent direction of objective function even without relying on any line search method.Spectral conjugate gradient method is applied to full waveform inversion for numerical tests on Marmousi model.The authors give a comparison on numerical results obtained by steepest descent method,conjugate gradient method and spectral conjugate gradient method,which shows that the spectral conjugate gradient method is superior to the other two methods.展开更多
基金supported by the National Key Research and Development Program of China(2022YFD1200400)the Scientific and Technological Innovation Team of Shaanxi Province(2024RSCXTD-69)+1 种基金the Key Research and Development Program of Shaanxi Province(2021LLRH-07)a grant from the Yang Ling Seed Industry Innovation Center(K3031122024).
文摘Appropriate flowering time in rapeseed(Brassica napus L.)is vital for preventing losses from weather,diseases,and pests.However,the molecular basis of its regulation remains largely unknown.Here,a genome-wide association study identifies BnaC09.FUL,a MADS-box transcription factor,as a promising candidate gene regulating flowering time in B.napus.BnaC09.FUL expression increases sharply in B.napus shoot apices near bolting.BnaC09.FUL overexpression results in early flowering,while BnaFUL mutation causes delayed flowering in B.napus.A zinc finger transcription factor,BnaC06.WIP2,is identified as an interaction partner of BnaC09.FUL,and BnaC06.WIP2 overexpression delays flowering in B.napus,with RNA sequencing revealing its influence on the expression of many flowering-associated genes.We further demonstrate that BnaC06.WIP2 directly represses the expression of BnaA05.SOC1,BnaC03.SOC1,BnaC04.SOC1,BnaC06.FT,BnaA06.LFY,BnaC07.FUL,BnaA08.CAL,and BnaC03.CAL and indirectly inhibits the expression of other flowering time-related genes.Genetic and molecular investigations highlight the antagonistic relationship between BnaC09.FUL and BnaC06.WIP2 in regulating the flowering time in B.napus through direct regulation of the expression of BnaC03.SOC1,BnaA08.CAL,and BnaC03.CAL.Overall,our findings provide a mechanism by which the BnaC09.FUL–BnaC06.WIP2 transcriptional regulatory module controls the flowering time in B.napus.
文摘A general method in considering the core electromc correlation energies has been proposed and introduced into the standard Gaussian-2 (G2)[7] theory hy small post-Hartree-Fock calculations. In this papcr an additional MP2(FC)/6-31G(d) calculation over the G2 procedures is employed and examined in modihcation in modification to the flaw of Frozen-Core (FC) approximation of G2 vai eq:E(full)= E[MP2(full)/6-31G(d)]-E[MP2(FC)/6-31G(d)]where the MP2(full)/6-31G(d) cnergy has been obtaincd in the molefular gcometry optimizations. This energy, E(full), is directly added into the total G2 energy of a molecule in facilitating the effect of core electronic correlations for each molecule in chemical reactions. It has been shown that the over-all avcrage absolute deviation for the 125 reaction energies of the G2 test set (test set 1) is slightly reduced from 5.09 to 5.01 kJ, mol(-1) while for the 55 D0 values, which have been used for the derivation of the A coefficient of the empirical High-Level-Correction (HLC), it is also reduced from 4.99 [for both G2 and G2(COMPLETE)[8]]to 4.77 kJ, mol(-1). In addition, Iargcr crrors (greater than ±8.4 kJ. mol(-1) for the D0 energies are improved, especially for the largest error of the D0of SO2 This error is reduced from 21.3 to 15.4 kJ. mol(-1), in which the experimental geometry would further reduce it by 7.1kJ.mol(-1)[8].Another improvement is the absolute value of the A coefficient in HLC being reduced from 4.81 for G2 to 4.34 milli-hartrees which is believed to be useful in isolating the relationship between the HLC and the FC approximation.Modifications to the original G2 from this work is denoted as G2(fu 1) and thus the G2 (fu 1) total energy for a molecule isE[G2(fu 1)]= E[G2]+ E(full)with a new E[HLC] =0.19α- 4.34nβ milli-hartree.
文摘Spectral conjugate gradient method is an algorithm obtained by combination of spectral gradient method and conjugate gradient method,which is characterized with global convergence and simplicity of spectral gradient method,and small storage of conjugate gradient method.Besides,the spectral conjugate gradient method was proved that the search direction at each iteration is a descent direction of objective function even without relying on any line search method.Spectral conjugate gradient method is applied to full waveform inversion for numerical tests on Marmousi model.The authors give a comparison on numerical results obtained by steepest descent method,conjugate gradient method and spectral conjugate gradient method,which shows that the spectral conjugate gradient method is superior to the other two methods.