期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Frontogenesis and frontolysis of cold filament impacted by different directions of wind and wave fields using large eddy simulation
1
作者 Guojing LI Dongxiao WANG +2 位作者 Changming DONG Yeqiang SHU Yunkai HE 《Journal of Oceanology and Limnology》 2025年第3期676-691,共16页
The variations of the frontogenetic activity of cold filament driven by the different angle(θ=0°,22.5°,45°,67.5°,and 90°)of the wind and wave fields and the filament axis are studied by non h... The variations of the frontogenetic activity of cold filament driven by the different angle(θ=0°,22.5°,45°,67.5°,and 90°)of the wind and wave fields and the filament axis are studied by non hydrostatic large eddy simulation.Conversion between the frontogenesis and frontolysis of cold filament were created by the chang in the direction of secondary circulations.The changes in the direction of secondary circulation are induced by the Coriolis Effect regardless of wind direction and wave fields.The destructive action of the wind and wave fields on symmetry of the submesoscale flow fields becomes weak as the angle increases.The secondary downwelling jet induced by Stokes shear force is gradually close to that associated with secondary circulations as the angle changes fromθ=0°to 45°and then the downwelling jet is only created by secondary circulations forθ=67.5°and 90°.The frontogenetic intensity of cold filament may be impacted by the angle of the wind and wave fields and the filament axis.The reason is that firstly the odd-symmetry of secondary circulations enhances with the angle increasing,and secondary the secondary downwelling jet created the Stokes shear force gradually weakens and then disappears with the angle increasing. 展开更多
关键词 cold filament FRONTOGENESIS frontolysis secondary circulation
在线阅读 下载PDF
Frontogenesis and Frontolysis of a Cold Filament Driven by the Cross-Filament Wind and Wave Fields Simulated by a Large Eddy Simulation 被引量:1
2
作者 Guojing LI Dongxiao WANG +3 位作者 Changming DONG Jiayi PAN Yeqiang SHU Zhenqiu ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期509-528,共20页
The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and w... The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis. 展开更多
关键词 cold filament FRONTOGENESIS frontolysis large eddy simulation
在线阅读 下载PDF
Cold filament frontogenesis and frontolysis induced by thermal convection turbulence using large eddy simulation
3
作者 Zewen Wu Guojing Li +1 位作者 Yunkai He Jintuan Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第9期26-34,共9页
The frontogenetic processes of a submesoscale cold filament driven by the thermal convection turbulence are studied by a non-hydrostatic large eddy simulation.The results show that the periodic changes in the directio... The frontogenetic processes of a submesoscale cold filament driven by the thermal convection turbulence are studied by a non-hydrostatic large eddy simulation.The results show that the periodic changes in the direction of the cross-filament secondary circulations are induced by the inertial oscillation.The change in the direction of the secondary circulations induces the enhancement and reduction of the horizontal temperature gradient during the former and later inertial period,which indicates that the frontogenetical processes of the cold filament include both of frontogenesis and frontolysis.The structure of the cold filament may be broken and restored by frontogenesis and frontolysis,respectively.The magnitude of the down-filament currents has a periodic variation,while its direction is unchanged with time.The coupling effect of the turbulent mixing and the frontogenesis and frontolysis gradually weakens the temperature gradient of the cold filament with time,which reduces frontogenetical intensity and enlarges the width of cold filament. 展开更多
关键词 cold filament FRONTOGENESIS frontolysis thermal convection turbulence large eddy simulation
在线阅读 下载PDF
Structural Characteristics of the Spring Transverse Shear Line over the Qinghai-Tibet Plateau and the Influence Mechanism of the Upper-level Jet on Its Evolution
4
作者 Qin GUAN Xiaoyan SHEN Qingping LI 《Meteorological and Environmental Research》 CAS 2022年第2期28-37,40,共11页
Based on the four-times-daily ERA-Interim data with the resolution of 0.75°×0.75°,the structure and evolution characteristics of a transverse shear line(TSL)over the Qinghai-Tibet Plateau in April 2017 ... Based on the four-times-daily ERA-Interim data with the resolution of 0.75°×0.75°,the structure and evolution characteristics of a transverse shear line(TSL)over the Qinghai-Tibet Plateau in April 2017 were analyzed,and the influence mechanism of the frontogenesis and frontolysis caused by the upper-level jet on its evolution was also investigated.The results show that the TSL was mainly located near the axis of the positive vorticity zone,which was a low-value area of the wind speed.It was a shallow baroclinic system with weak ascending motion.In the vertical direction,the TSL extended to the lowest height at 00:00 and the highest at 18:00.In the horizontal direction,the length of the TSL in the east-west direction was relatively shorter during 00:00-06:00 and relatively longer during 12:00-18:00.Besides,the position of the TSL was slightly northward at 06:00 and slightly southward at 18:00.The moving direction of the TSL was generally consistent with that of the upper-level jet.In addition,the vertical stretching height of the TSL and the near-surface wind speed were positively correlated with the intensity of the upper-level jet.The calculation by frontogenesis function indicates that the frontogenesis(frontolysis)was conducive to the formation(weakening)and strengthening(dissipation)of the TSL.The horizontal deformation-induced and diabatic heating-induced frontogenesis were favorable for the formation of the TSL,while the middle-level horizontal convergence-induced and diabatic heating-induced frontogenesis were beneficial to its maintenance.Besides,the moving direction and baroclinicity of the TSL over the Qinghai-Tibet Plateau were determined by the horizontal deformation-induced frontogenesis.In the frontogenesis function,the terms of horizontal deformation and horizontal convergence together determined the position of the TSL,and the diabatic heating term was conducive to the upward extension of the TSL. 展开更多
关键词 Plateau transverse shear line Structure EVOLUTION Frontogenesis and frontolysis
在线阅读 下载PDF
INVESTIGATION ON GEOSTROPHIC ADJUSTMENT,FRONTOGENESIS AND OSCILLATIONS 被引量:3
5
作者 PAN Yinong(潘益农) +1 位作者 WU Rongsheng(伍荣生) 《Acta meteorologica Sinica》 SCIE 2001年第3期346-355,共10页
Geostrophic adjustment and frontogenesis are examined by means of the 2-D ARPS model. The simulation shows that.without the large-scale forcing,both the frontogenesis and frontolysis are observed during the geostrophi... Geostrophic adjustment and frontogenesis are examined by means of the 2-D ARPS model. The simulation shows that.without the large-scale forcing,both the frontogenesis and frontolysis are observed during the geostrophic adjustment process and the intensity of the front oscillates in the case of no discontinuity.The convergence (divergence) induced by the secondary circulation is the most important factor for frontogenesis (frontolysis) at the top and bottom boundaries.The amplitude and period of oscillation are dependent on the initial atmospheric stratification and the Coriolis frequency,and they are related to the inertio-gravity wave. 展开更多
关键词 geostrophic adjustment frontogenesis and frontolysis inertio-gravity oscillation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部