期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
ResFPN:扩增实际感受野和改进FPN的多尺度目标检测方法 被引量:3
1
作者 杨扬 唐晓芬 《计算机工程与应用》 北大核心 2025年第10期247-257,共11页
针对多尺度目标检测中主干网络实际感受野远远小于理论感受野,感受野分布稀疏,以及特征金字塔网络(feature pyramid network,FPN)在横向连接过程中统一通道数会丢失通道信息等影响模型性能的问题,提出一种扩增实际感受野和多特征融合改... 针对多尺度目标检测中主干网络实际感受野远远小于理论感受野,感受野分布稀疏,以及特征金字塔网络(feature pyramid network,FPN)在横向连接过程中统一通道数会丢失通道信息等影响模型性能的问题,提出一种扩增实际感受野和多特征融合改进FPN的多尺度目标检测算法ResFPN。针对主干网络实际感受野远远小于理论感受野的问题,设计了多分支膨胀卷积(multi-branch dilated convolutional,MBD)模块和多分支池化(multi-branch pooling,MBP)模块,通过学习不同尺度空间特征融合,扩增感受野。针对感受野分布稀疏问题,提出轻量级通道交互融合(channel interactive fusion,CIF)模块,通过双分支结构并在每一分支叠加不同数量深度可分离卷积学习像素间的依赖关系增强特征表示。针对FPN通过1×1卷积统一通道数会丢失通道信息的问题,尝试利用SubPixel卷积提取C5层输出特征,保留原始丰富语义信息的同时引出额外双向路径对FPN通道信息进行补充,但这可能会产生冗余信息。因此,在额外双向路径后引入全局上下文(global context,GC)模块,利用GC瓶颈转换模块进一步融合特征信息,减少信息冗余。实验表明,提出的ResFPN有效解决了感受野分布稀疏问题,并将主干网络感受野增大为原来的一倍,同时提出的改进FPN通道丢失问题的方法也在多尺度目标检测中获得了良好的性能。与典型的网络Faster R-CNN相比,大、中、小物体检测平均精度在具有挑战性的MS COCO数据集上分别提高了2.2、1.6、2.0个百分点,与其他检测器相比检测效果也有提升。 展开更多
关键词 目标检测 卷积神经网络 多尺度目标检测 感受野 特征金字塔网络(fpn)
在线阅读 下载PDF
融合FPN与SFB的Swin Transformer图像去噪网络
2
作者 袁姮 华乾勇 《计算机系统应用》 2025年第10期32-43,共12页
为了提升图像去噪网络对局部与全局信息的捕捉能力,本文提出一种基于特征金字塔网络(feature pyramid network, FPN)和空间频率块(spatial frequency block, SFB)的Swin Transformer图像去噪网络(SwinFPSFNet).该网络由3个阶段组成:在... 为了提升图像去噪网络对局部与全局信息的捕捉能力,本文提出一种基于特征金字塔网络(feature pyramid network, FPN)和空间频率块(spatial frequency block, SFB)的Swin Transformer图像去噪网络(SwinFPSFNet).该网络由3个阶段组成:在浅层特征提取阶段,设计了特征金字塔网络以增强局部特征提取能力;在深层特征提取阶段,结合快速傅里叶卷积(fast Fourier convolution, FFC)设计空间频率块,用于同时捕捉全局与局部信息;最后,通过聚合浅层与深层特征,进一步增强网络去噪能力.此外,本文构建了一种高斯噪声退化模型并结合多种数据增强策略,以提升网络的泛化能力.在CBSD68、Kodak24和Urban100数据集上的实验结果表明,与当前主流去噪方法如BM3D、DnCNN、FFDNet、SwinIR等相比, SwinFPSFNet能够兼顾局部与全局信息,在噪声抑制和保留图像细节方面表现出显著优势. 展开更多
关键词 图像去噪 Swin Transformer 特征金字塔网络 空间频率块
在线阅读 下载PDF
基于改进YOLOv9的群养猪身份识别模型
3
作者 陈晨 刘浩然 NORTON Tomas 《中国农业科技导报(中英文)》 北大核心 2025年第10期134-143,共10页
猪攻击过程中会产生身体形变、遮挡等因素,从而导致猪身份难以识别。提出一种基于改进YOLOv9的深度学习算法识别攻击状态下猪身份。从标记的600段1 s攻击视频中产生18000帧图像作为数据集。首先,采用DualConv替换YOLOv9网络的下采样,在... 猪攻击过程中会产生身体形变、遮挡等因素,从而导致猪身份难以识别。提出一种基于改进YOLOv9的深度学习算法识别攻击状态下猪身份。从标记的600段1 s攻击视频中产生18000帧图像作为数据集。首先,采用DualConv替换YOLOv9网络的下采样,在保持精度基础上降低计算量;然后,融合双向特征金字塔改进YOLOv9的颈部网络部分,以提升模型在攻击场景下的特征提取能力;接着,在主干网络的RepNCSPELAN4层后引入局部自注意力机制,以增强模型捕捉局部特征的能力;最后,采用改进的YOLOv9识别猪身份。结果表明,改进的YOLOv9模型识别猪身份的平均精度达93.6%,较基准模型提高3.7百分点,检测速度达31.58帧·s^(-1)。以上表明,改进的YOLOv9算法能有效提升攻击场景下猪身份的识别精度,有助于将攻击识别从群体级细化为个体级。 展开更多
关键词 猪身份识别 深度学习 YOLOv9 双向特征金字塔网络 自注意力机制
在线阅读 下载PDF
基于MF-YOLOX-S的煤矿井下行人检测算法
4
作者 谢斌红 张晓晨 《太原科技大学学报》 2025年第5期433-438,446,共7页
针对煤矿井下大型设备遮挡、行人尺度不一等复杂环境导致行人检测出现漏检、误检等问题,提出一种基于MF-YOLOX-S算法的煤矿井下行人检测方法。通过设计新的特征金字塔模型MF-FPN作为YOLOX-S中原始特征金字塔网络(Feature Pyramid Networ... 针对煤矿井下大型设备遮挡、行人尺度不一等复杂环境导致行人检测出现漏检、误检等问题,提出一种基于MF-YOLOX-S算法的煤矿井下行人检测方法。通过设计新的特征金字塔模型MF-FPN作为YOLOX-S中原始特征金字塔网络(Feature Pyramid Networks,FPN)的替代方案,首先将多尺度注意力模块填充至FPN高层特征融合前,以提取丰富的多尺度上下文信息;其次,在特征融合后利用特征增强模块增大FPN中的感受野,增强原始特征金字塔的表征能力,在保证检测实时性的前提下,提高YOLOX-S网络对复杂环境下行人的检测能力。在COCO数据集和煤矿井下行人数据集下的实验结果表明,所提算法相对于原YOLOX-S,平均精度mAP分别有1.96%和3.64%的提升,且检测速度达到65 FPS,满足井下行人检测的实时性要求,对煤矿智能监控系统具有重要意义。 展开更多
关键词 煤矿井下 MF-fpn YOLOX网络 多尺度特征融合 遮挡行人检测
在线阅读 下载PDF
基于改进的Retinaface在复杂场景下的人脸检测方法研究
5
作者 刘钢 高迈 赵景辉 《长春工业大学学报》 2025年第1期10-18,共9页
为了适应正常时期因环境、传染病等因素引起的口罩佩戴等复杂场景,针对人脸检测中存在的部分遮挡、角度变化、光线强度、人脸模糊等复杂环境因素,通过改进Retinaface算法来提高检测精度。首先,在主干网络的第三个输出后文中引入了感受... 为了适应正常时期因环境、传染病等因素引起的口罩佩戴等复杂场景,针对人脸检测中存在的部分遮挡、角度变化、光线强度、人脸模糊等复杂环境因素,通过改进Retinaface算法来提高检测精度。首先,在主干网络的第三个输出后文中引入了感受野增强模块CBAM_ASPP,增强模型识别不同尺寸同一物体的能力,提高人脸检测精度;其次,提出的D-FPN为对特征金字塔网络的改进,在原特征金字塔的第三层和第二层输出后加入下采样来增加整体图像的上下文和全局特征。实验结果表明,相比较原算法,在WiderFace人脸数据集的Easy、Medium、Hard分类情况下的准确率分别为92.3%、89.4%、75.8%,分别提升2.4%,2.5%,4.0%。可以看出,文中改进算法在复杂环境下人脸识别准确率进一步提高,网络性能得到改善。 展开更多
关键词 Retinaface fpn 人脸检测 深度学习
在线阅读 下载PDF
基于改进RT-DETR的极端天气下交通标志检测方法 被引量:1
6
作者 秦伦明 张云起 +2 位作者 崔昊杨 边后琴 王悉 《电子测量技术》 北大核心 2025年第9期56-64,共9页
针对雨、雾和雪等极端天气下交通标志模糊不清,导致检测精度下降和小目标识别困难等问题,本文提出了一种基于改进RT-DETR的交通标志检测算法。首先,采用数据增强方法模拟极端天气环境,以提高模型在这些环境下对交通标志的识别能力。其次... 针对雨、雾和雪等极端天气下交通标志模糊不清,导致检测精度下降和小目标识别困难等问题,本文提出了一种基于改进RT-DETR的交通标志检测算法。首先,采用数据增强方法模拟极端天气环境,以提高模型在这些环境下对交通标志的识别能力。其次,在主干网络中引入Ortho注意力机制,利用正交滤波器减少特征冗余,筛选重要通道信息,提高对小目标的检测精度。此外,采用高层筛选特征金字塔网络(HS-FPN)替换原模型中的跨尺度上下文特征混合器(CCFM),通过高层特征筛选并融合低层特征信息,提升模型在极端天气下对低对比度和模糊目标的检测精度。实验结果显示,改进算法在平均检测精度方面达到87.84%,相比原始RT-DETR模型提高了2.37%,同时参数量减少至18.22 M,相比原模型降低了8.4%,对小目标和处于极端天气中的目标识别精度更高,对保障乘客的安全具有实际意义。 展开更多
关键词 RT-DETR 正交通道注意力机制 高层筛选特征金字塔网络 交通标志识别 图像增强
原文传递
远距离情形下的改进YOLOv8行人检测算法 被引量:2
7
作者 汤静雯 赖惠成 王同官 《计算机工程》 北大核心 2025年第4期303-313,共11页
智慧社区场景下的行人检测需要精准识别行人以应对各类情况的发生,然而面对遮挡和远距离行人的情景,现有检测器会出现漏检、误检以及模型过大不易部署的问题。针对以上问题,提出基于YOLOv8的行人检测算法ME-YOLO。设计一种高效特征提取... 智慧社区场景下的行人检测需要精准识别行人以应对各类情况的发生,然而面对遮挡和远距离行人的情景,现有检测器会出现漏检、误检以及模型过大不易部署的问题。针对以上问题,提出基于YOLOv8的行人检测算法ME-YOLO。设计一种高效特征提取模块(EM),使得网络更好地学习行人特征和捕捉行人特点,在减少网络参数量的同时提高检测精度。设计一个重构的检测头模块,重新整合后的检测层增强了网络对小目标的识别能力,有效检测小目标行人。引入双向特征金字塔网络来设计新的颈部网络,即双向扩张残差-特征金字塔网络(BDR-FPN),利用扩张残差模块和附权注意力机制来扩展感受野及有所侧重地学习行人特征,缓解网络对遮挡行人不敏感问题。实验结果表明,在CityPersons数据集上进行训练和验证,相比原算法YOLOv8,ME-YOLO算法的AP_(50)提高了5.6百分点,模型参数量减少了41%,模型大小压缩了40%,在TinyPerson数据集上验证算法的有效性和泛化性,AP_(50)提高了4.1百分点,AP_(50∶95)提高了1.7百分点。该算法在大幅度减少模型参数和大小的同时,有效提高了检测精度,在智慧社区场景中有较好的应用价值。 展开更多
关键词 行人检测 智慧社区 小目标行人 特征金字塔网络 YOLOv8算法
在线阅读 下载PDF
基于SSD-MobileNetv2和FPN的人脸检测 被引量:8
8
作者 康晓凤 厉丹 《电子器件》 CAS 北大核心 2023年第2期455-462,共8页
随着人工智能技术的不断发展,人脸检测与识别技术以其广泛的应用性成为学术研究的重点。提出了SSD-MobileNetv2-FPN人脸检测模型,首先用轻量级的MobileNetv2代替SSD中的VGG-16主干网络,减少模型训练参数以提高模型的检测速度,然后引入FP... 随着人工智能技术的不断发展,人脸检测与识别技术以其广泛的应用性成为学术研究的重点。提出了SSD-MobileNetv2-FPN人脸检测模型,首先用轻量级的MobileNetv2代替SSD中的VGG-16主干网络,减少模型训练参数以提高模型的检测速度,然后引入FPN网络提取多尺度特征信息使得模型更利于小目标人脸的检测,增加检测精度。最后引入Focal loss损失函数解决模型在训练过程中出现前景和背景类分布不平衡问题,提高模型性能。实验表明上述模型在Pascal Voc 2012人脸部分数据集中准确率为92.5%,且处理速度快,满足实时需求。 展开更多
关键词 MobileNetv2网络 fpn网络 SSD模型 人脸检测
在线阅读 下载PDF
基于YOLOv5n模型改进的口罩检测算法:Mask-YOLO
9
作者 李毅 徐慧英 +3 位作者 朱信忠 黄晓 王舒梦 李悉钰 《计算机工程》 北大核心 2025年第6期297-310,共14页
口罩作为基础的个人防护物品,在公共卫生领域发挥着重要作用。针对复杂场景下口罩检测精确度低的问题,提出一种基于YOLOv5n改进的轻量级口罩检测算法Mask-YOLO,以提高口罩检测精确度和模型训练的稳定性。在特征提取阶段的卷积模块组中采... 口罩作为基础的个人防护物品,在公共卫生领域发挥着重要作用。针对复杂场景下口罩检测精确度低的问题,提出一种基于YOLOv5n改进的轻量级口罩检测算法Mask-YOLO,以提高口罩检测精确度和模型训练的稳定性。在特征提取阶段的卷积模块组中采用Softplus激活函数,提升模型非线性映射效率,加快模型的收敛速度;在主干特征提取深层网络中添加Coordinate Attention,通过嵌入位置信息得到通道注意力,使网络获取更大的物体区域信息和通道目标特征,同时避免较大的内存开销;在深层网络将快速空间金字塔池化(SPPF)模块替换为接受域模块(RFB),借助不同的膨胀率来扩大卷积特征采样的感受野,以获取高层网络中丰富的物体语义信息;在多尺度特征融合网络PANet结构的基础上,添加BiFPN跨阶段多尺度特征融合设计,使得具有不同尺度空间信息和语义信息的目标特征充分融合交互,进一步提升小目标检测精度;采用DIoU作为边界框损失函数,用以解决边界框回归不稳定和目标漏检的问题;采用Soft-NMS的方法,通过降低重叠检测框置信度得分的方式,进一步提升检测效率。实验结果表明,Mask-YOLO与基准模型YOLOv5n相比,在mAP@0.95综合评价指标上性能提升8.58%,解决了原始YOLOv5n算法在口罩检测中小目标检测精度低、边界框回归不稳定、模型训练收敛慢等问题,实现了高效的口罩检测。 展开更多
关键词 目标检测 口罩检测 特征融合 YOLOv5n 特征金字塔网络
在线阅读 下载PDF
RO-YOLOv9车辆行人检测算法 被引量:2
10
作者 廖炎华 万学俊 +1 位作者 赵周洲 潘文林 《计算机工程与应用》 北大核心 2025年第11期144-155,共12页
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a... 针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。 展开更多
关键词 YOLOv9 小目标检测 双向与自适应尺度融合特征金字塔网络(BiASF-fpn) OR-RepN4 Shape-NWD
在线阅读 下载PDF
轻量化的多尺度特征校准小目标检测网络
11
作者 徐杰 郭立君 +2 位作者 冯海 徐栋炯 张荣 《计算机应用》 北大核心 2025年第S1期228-234,共7页
为了解决复杂工业场景中边缘设备部署和小目标检测的漏检问题,提出一种轻量化的多尺度特征校准小目标检测网络(LMFC-Net)。首先,针对由于网络层数加深导致的浅层特征信息丢失及空间特征错位问题,提出多尺度特征校准的特征金字塔网络(MSF... 为了解决复杂工业场景中边缘设备部署和小目标检测的漏检问题,提出一种轻量化的多尺度特征校准小目标检测网络(LMFC-Net)。首先,针对由于网络层数加深导致的浅层特征信息丢失及空间特征错位问题,提出多尺度特征校准的特征金字塔网络(MSFC-FPN),利用深层特征校准浅层特征,在降低参数量的同时,提高模型对密集小目标的检测能力;其次,提出一种轻量化的共享参数卷积检测头(LSPC-Head),显著提升特征表达能力,并有效降低模型的参数和计算量;最后,通过通道剪枝和特征蒸馏降低计算和内存开销,并提升检测精度,使它适用于资源受限设备。实验结果表明,在FactorySafeDet数据集上,与YOLOv8n相比,LMFC-Net的参数量和计算量分别降低了76.7%和24.7%,召回率和平均精度均值(mAP50)分别提高了5.9和2.7个百分点。此外,在VisDrone2019、CrowdHuman和PCB公开数据集上,LMFC-Net具有良好的泛化性。与其他单阶段目标检测模型相比,LMFC-Net具有更小的模型参数量、计算量和更优的检测效果。 展开更多
关键词 小目标检测 轻量化 多尺度特征校准 特征金字塔网络 共享参数卷积检测头
在线阅读 下载PDF
基于Transformer的报纸版面分割方法研究
12
作者 朱一凡 高华 业宁 《南京师大学报(自然科学版)》 北大核心 2025年第1期109-118,共10页
大数据背景下信息的检索与研究对海量传统纸媒的数字化提出了挑战,得益于不断发展的计算机视觉与人工智能方法,DETR模型可被应用于报纸版面分割.针对原模型在版面分割中存在的检测速度慢、参数量大及分类不精准等问题,本文提出了采用Shu... 大数据背景下信息的检索与研究对海量传统纸媒的数字化提出了挑战,得益于不断发展的计算机视觉与人工智能方法,DETR模型可被应用于报纸版面分割.针对原模型在版面分割中存在的检测速度慢、参数量大及分类不精准等问题,本文提出了采用ShuffleNet V2轻量级主干网络的改进模型,该方法可有效提升计算效率并减少模型参数量,从而缓解Transformer结构的计算压力.同时,通过特征金字塔结构,该模型能够充分融合全局信息及细节信息,显著增强多尺度目标的识别能力.此外,该模型还引入高效通道注意力(ECA)模块来提取关键目标特征,以此有效抑制无关背景信息,在保证分割性能的同时实现轻量化设计.实验结果表明,改进模型在报纸版面分割任务中的参数量为38.5 M,帧率(FPS)高达47.5 img/s,mAP_(0.5)达到了0.806.与原DETR模型相比,改进模型在参数量上减少了2.8 M,帧率提高了28.3 img/s,mAP_(0.5)提升了3.2%.本文提出的模型还可以为报纸版面的OCR识别提供前期技术支持. 展开更多
关键词 版面分割 DETR ShuffleNet V2 特征金字塔 ECA通道注意力
在线阅读 下载PDF
优化FPN的高分辨率遥感影像多类别地物语义分割 被引量:3
13
作者 李卫东 梁鑫婕 +2 位作者 刘钦灏 时春波 左晨威 《遥感信息》 CSCD 北大核心 2022年第5期1-7,共7页
针对高分辨遥感影像多类别地物存在类间不平衡、类别区分度低造成的语义分割方法鲁棒性弱和分割精度不高问题,基于UNet、特征金字塔网络(feature pyramid networks,FPN)、DeepLabV3+、HRNet 4种2D多尺度特征融合的卷积神经网络模型架构... 针对高分辨遥感影像多类别地物存在类间不平衡、类别区分度低造成的语义分割方法鲁棒性弱和分割精度不高问题,基于UNet、特征金字塔网络(feature pyramid networks,FPN)、DeepLabV3+、HRNet 4种2D多尺度特征融合的卷积神经网络模型架构,对多尺度特征融合技术进行了探讨,通过数据预处理、损失函数、模型预训练等因素对精细土地覆盖的语义分割(多达16个语义类别)进行了模型能力的测试和实验,其中FPN语义分割精细化程度最高。在此基础上,基于EfficientNetB1的FPN模型进行预训练,利用focal loss损失函数选择最优多尺度特征融合,通过超参数搜索损失函数参数最优值进行优化集成,最终训练出性能优异的FPN模型,准确率提高了1.5%,Kappa提高了1.9%,进一步提高了模型对多类别地物的识别能力和泛化能力。 展开更多
关键词 语义分割 多尺度特征融合 fpn 卷积神经网络 多类别地物
在线阅读 下载PDF
基于梅尔谱特征和改进ResNet网络的室内跌倒检测方法
14
作者 杨松铭 王玫 《桂林理工大学学报》 北大核心 2025年第2期251-259,共9页
为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神... 为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神经网络进行分类,提高了室内跌倒事件识别的抗噪性能。通过SimAM注意力、特征金字塔(FPN)以及动态区域感知卷积(DRConv)来改进网络结构。实验结果表明,在不同数据集下,该方法比传统识别方法性能更优。改进后的网络模型在A3FALL数据集上的查准率、召回率和F1-Score分别达到了98.43%、98.21%和98.32%;对于人类跌倒的声音识别,其F1-Score达到了96.45%,相较于其他传统网络模型都具有更好的表现。 展开更多
关键词 跌倒检测 SimAM 卷积神经网络 特征金字塔 动态区域感知卷积 梅尔频率倒谱系数(MFCC)
在线阅读 下载PDF
基于YOLOv8n的轻量级织物疵点检测算法 被引量:1
15
作者 刘奇龙 胡连信 +3 位作者 杨宏铖 顾善琪 严明华 王泽峰 《棉纺织技术》 2025年第7期16-24,共9页
针对织物疵点检测常用的目标检测算法复杂度高、计算量大且不易部署的问题,以及中小型企业检测设备计算能力和资源有限等问题,提出一种基于YOLOv8n目标检测算法的轻量级织物疵点检测算法。该方法通过在Backbone层中引入轻量卷积模块Ghos... 针对织物疵点检测常用的目标检测算法复杂度高、计算量大且不易部署的问题,以及中小型企业检测设备计算能力和资源有限等问题,提出一种基于YOLOv8n目标检测算法的轻量级织物疵点检测算法。该方法通过在Backbone层中引入轻量卷积模块GhostConv替代原有YOLOv8n特征提取网络中的普通卷积,以减少网络参数,引入C3Ghost模块替代原来的特征提取网络中的C2f模块,进一步减少计算量;同时在Neck层引入轻量级的HS-FPN,用于更好解决织物疵点检测中的多尺度问题;在Head层引入高效解耦合头EDH,降低延迟,提高检测速度。通过对构建的包含4种缺陷的织物数据集进行测试,与YOLOv8n模型相比,该改进模型的参数量Params和计算量FLOPs分别为1.0 M和3.7 G,仅为原YOLOv8n模型的33.3%和45.7%,大大缩小了模型的复杂度;mAP值达到89.8%,与YOLOv8n模型基本持平;FPS提高了41.7帧/s。与当前主流的目标检测算法相比,该改进模型在不牺牲检测精度的前提下所需要的计算资源更少,速度更快,部署更有优势。 展开更多
关键词 织物疵点检测 YOLOv8n 轻量级网络 C3Ghost HS-fpn 高效解耦合
在线阅读 下载PDF
融合改进FPN与关联网络的Faster R-CNN目标检测 被引量:15
16
作者 汪常建 丁勇 卢盼成 《计算机工程》 CAS CSCD 北大核心 2022年第2期173-179,共7页
在无人机场景下,目标检测存在样本数量不足、成像视角不同的问题,导致检测精度低。提出一种结合改进特征金字塔网络(FPN)与关联网络的Faster R-CNN目标检测算法。通过在传统FPN结构中以自下而上的特征融合方式提取特征图的语义信息和位... 在无人机场景下,目标检测存在样本数量不足、成像视角不同的问题,导致检测精度低。提出一种结合改进特征金字塔网络(FPN)与关联网络的Faster R-CNN目标检测算法。通过在传统FPN结构中以自下而上的特征融合方式提取特征图的语义信息和位置信息,最大程度地保留特征图的多尺度信息。同时利用候选区域之间的形状特征和位置特征构造区域之间的关联特征,并与深度特征相融合进行分类回归,从而充分提取特征图的整体信息,实现目标检测。在PASCAL VOC 2007和NWPU VHR-10数据集上的实验结果表明,相比FPN+Faster R-CNN算法,该算法的交并比和平均检测精度分别提高了10和2.7个百分点,具有较优的目标检测性能。 展开更多
关键词 目标检测 尺度 特征金字塔网络 关联网络 特征融合
在线阅读 下载PDF
Multi-scale object detection by top-down and bottom-up feature pyramid network 被引量:14
17
作者 ZHAO Baojun ZHAO Boya +2 位作者 TANG Linbo WANG Wenzheng WU Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期1-12,共12页
While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection ... While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps. 展开更多
关键词 convolutional neural network (CNN) FEATURE PYRAMID network (fpn) object detection deconvolution.
在线阅读 下载PDF
基于Residual-FPN优化的航拍绝缘子目标识别 被引量:3
18
作者 邹汉凌 陆丽 《仪表技术》 2019年第10期13-16,共4页
基于图像的绝缘子识别是电网的智能电力巡检的重要任务之一,由于无人机巡检中绝缘子大小和种类、拍摄角度以及场景的多样性导致目标检测精度不高,针对此问题进行基于Residual-FPN优化的卷积神经网络绝缘子识别研究。首先采集并且标注绝... 基于图像的绝缘子识别是电网的智能电力巡检的重要任务之一,由于无人机巡检中绝缘子大小和种类、拍摄角度以及场景的多样性导致目标检测精度不高,针对此问题进行基于Residual-FPN优化的卷积神经网络绝缘子识别研究。首先采集并且标注绝缘子图像数据,这些数据包含了高压输电塔、铁路接触网等场景;然后构建不同网络结构的绝缘子识别系统,网络经过训练后对绝缘子图像进行识别;最后分析不同模型对绝缘子的识别精度的影响。实验结果表明,基于Residual-FPN优化后的网络具有较高的识别率,识别精度达到90.21%。 展开更多
关键词 目标检测 电力巡检 绝缘子 Residual-fpn 卷积神经网络
原文传递
基于改进FPN与SVM的树障检测方法 被引量:5
19
作者 斯建东 汤义勤 赵文浩 《浙江电力》 2023年第9期124-132,共9页
针对目前无人机搭载传感器的树障检测方法无法实现自动检测的问题,提出一种基于改进的FPN(特征金字塔网络)与SVM(支持向量机)的树障检测算法。在传统的FPN基础上,进行自下而上的反向侧边连接并融合,采用ResNet 50(深度残差网络)和改进的... 针对目前无人机搭载传感器的树障检测方法无法实现自动检测的问题,提出一种基于改进的FPN(特征金字塔网络)与SVM(支持向量机)的树障检测算法。在传统的FPN基础上,进行自下而上的反向侧边连接并融合,采用ResNet 50(深度残差网络)和改进的FPN作为特征提取网络得到特征向量,并将其输入基于遗传算法的SVM中进行二分类,进而判断所检测图像中是否存在树障隐患。实验结果表明,本算法用于树障检测的准确率达到93.4%,处理图像的平均速度达到每秒11张,漏检率和误检率较低,具有较强的泛化能力。 展开更多
关键词 无人机 树障检测 特征金字塔 深度残差网络 支持向量机
在线阅读 下载PDF
基于multi-FPN的遥感目标检测方法 被引量:2
20
作者 杨志钢 黎明 李泳江 《应用科技》 CAS 2021年第5期16-22,共7页
遥感图像的目标检测一直是计算机视觉领域中重要的任务之一,遥感图像中的目标大多具有尺度多样、排布密集、背景复杂等特点,给特征提取带来了很大的困难,进而影响检测的性能。为了解决此问题,本文提出了一种基于多重特征金字塔网络(mult... 遥感图像的目标检测一直是计算机视觉领域中重要的任务之一,遥感图像中的目标大多具有尺度多样、排布密集、背景复杂等特点,给特征提取带来了很大的困难,进而影响检测的性能。为了解决此问题,本文提出了一种基于多重特征金字塔网络(multi-FPN)的遥感图像目标检测方法,该方法采用残差网络作为主干网络,在特征金字塔网络(FPN)的基础上加入跨层连接结构,改变上采样金字塔的输出层级,进一步地增强了特征的传播和重用;同时,采用双线性插值法替代原本的最邻近插值法,使得特征上采样效果更好。通过实验表明,该方法检测性能良好,在公开遥感图像数据集NWPU VHR-10上平均检测精度达到91.92%。 展开更多
关键词 遥感图像 目标检测 特征金字塔网络 双线性插值 多重特征金字塔网络 计算机视觉 主干网络 特征采样
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部