Electron temperature and electron number density are important parameters in the characterization of plasma. In this paper the electron temperature and electron number density of soil plasma generated by laser ablatio...Electron temperature and electron number density are important parameters in the characterization of plasma. In this paper the electron temperature and electron number density of soil plasma generated by laser ablation combined with nanosecond discharge spark at different discharge voltages have been studied. Saha-Boltzmann plot and Stark broadening are used to determine the temper- ature and electron number density. It is proved that local thermal equilibrium is fulfilled in the nanosecond spark enhanced plasma. The enhanced optical emission, signal to noise ratio and the stability in term of the relative standard deviation of signal intensity at different spark voltages were investigated in detail. A relative stable discharge process was observed with use of a 10 kV discharge voltage under the carried experimental configuration.展开更多
文摘随着高速数字系统的不断发展,迫切需要有效的高速数据总线能够与之实现最佳的匹配,从而发挥出高速系统本身所具有的卓越性能。FPDP II总线是在FPDP总线的基础上提出的,400MB/s的单向数据传输速度使其成为广泛应用于高速系统的通用总线协议。本文基于FPGA完成了FPDP II总线逻辑的设计和仿真,在自主研制的高速系统上应用Signal Tap II成功进行了测试。
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 61178034), Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1100268), and partially supported by Key Research Project of University of Zhejiang Province, China (Grant No. ZD2009006), and the Program for Innovative Research Team, Zhejiang Normal University, Jinhua, Zhejiang Province, China.
文摘Electron temperature and electron number density are important parameters in the characterization of plasma. In this paper the electron temperature and electron number density of soil plasma generated by laser ablation combined with nanosecond discharge spark at different discharge voltages have been studied. Saha-Boltzmann plot and Stark broadening are used to determine the temper- ature and electron number density. It is proved that local thermal equilibrium is fulfilled in the nanosecond spark enhanced plasma. The enhanced optical emission, signal to noise ratio and the stability in term of the relative standard deviation of signal intensity at different spark voltages were investigated in detail. A relative stable discharge process was observed with use of a 10 kV discharge voltage under the carried experimental configuration.