Dual Synthetic Jets (DSJ) can directly affect the development of spray through the complex vortex structure. The mechanism of flow control on spray and its thermal management application are studied by combining exper...Dual Synthetic Jets (DSJ) can directly affect the development of spray through the complex vortex structure. The mechanism of flow control on spray and its thermal management application are studied by combining experiment and simulation. The spray characteristics under different injection angles are studied, and the results show that the angle should be controlled in the range of 45°–60°, so that sufficient momentum transfer can be obtained, and meanwhile spray impingement area narrowing can be avoided. The spray characteristics under flow control of DSJ with different Reynolds numbers are studied, and the results show that Reynolds number should be controlled in the range of 2859–3574, so that strong particle streamwise acceleration and wall film disturbing can be achieved. In addition, the DSJ kinetic energy is utilized more efficiently. On the basis of previous research, this paper proposes a novel active heat pipe based on spray controlled by DSJ. The space occupancy has been reduced by more than 60%. Even in a sealed state, the active heat pipe is able to cool a hot surface with heat flux of 22.2 kW/m^(2) from 111℃ to 57℃ only in 20 s. The noise of DSJ is reduced from 85 dB to 60 dB, which is expected to promote the practical application of DSJ in thermal management.展开更多
Triple-negative bresst canær(TNBC)metastscis is particularly severe due to its aggressive nsture,leading to rapid disease progresion and significantly reduced survival rates.Rujifang(RJF),a traditional Chinese fo...Triple-negative bresst canær(TNBC)metastscis is particularly severe due to its aggressive nsture,leading to rapid disease progresion and significantly reduced survival rates.Rujifang(RJF),a traditional Chinese formula,has demonstrated potential anti-tumor effects and theability to inhibit TNBC metastasis.However,the efects af varying R.IF dors remain undear.This study utilized Laser-based in vino fow cytometry(IVFC)to monitor circulating tumor cells(CTCs)and evaluate the efficacy of R.IF at different doses.The results indicated that R.IF at the high dose inhibited both the number af CTC:and the formaton of metatatic foci more eflectively compared to the lower dose.TUNEL assays revealed that R.IF trentment promotes apoptosis of tumor cells,with a more pronounced effect observed at the higher dose.Immuno-fluorescence experiments demonstrated that administering a higher dose of R.IF suppreses theеxprescion of Kindlin-1 more effectively in the tumor microenvironment.Although higher doses showed enhanced efficacy,they might also lesd to an increase in side efects.These findings underscore the promise and challenges of using R.IF at high doses for anti-tumor therspy.They highlight the criticnl importance of optimizing the dose of R.JP in the treatment of TNBC and provide valuable insights for its dinical application.展开更多
In this paper,we study the Neumann boundary value problem of the Yang-Mills α-flow over a 4-dimensional compact Riemannian manifold with boundary.We establish the short-time existence of the Yang-Millsα-flow in the ...In this paper,we study the Neumann boundary value problem of the Yang-Mills α-flow over a 4-dimensional compact Riemannian manifold with boundary.We establish the short-time existence of the Yang-Millsα-flow in the framework of functional analysis and derive long-time existence and convergence results of classical solutions to the Yang-Millsα-flow,provided that theα-energy of initial connection is below some threshold.We also prove the validity of the boundary version of small energy estimates,removal of isolated singularities,and energy lower bound result for non-flat Yang-Mills connections.These results lead to the bubbling convergence of a sequence of Yang-Millsα-connections,and as an application,we demonstrate the existence of non-trivial Yang-Mills connections with Neumann boundary.展开更多
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e...In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.展开更多
This is a survey of the results in[14]regarding the isoperimetric problem in the Riemannian manifold.We consider a mean curvature type flow in the Riemannian manifold endowed with a non-trivial conformal vector field,...This is a survey of the results in[14]regarding the isoperimetric problem in the Riemannian manifold.We consider a mean curvature type flow in the Riemannian manifold endowed with a non-trivial conformal vector field,which was firstly introduced by Guan and Li[8]in space forms.This flow preserves the volume of the bounded domain enclosed by a star-shaped hypersurface and decreases the area of hypersurface under certain conditions.We will prove the long time existence and convergence of the flow.As a result,the isoperimetric inequality for such a domain is established.展开更多
In this paper,the L_(p)chord Minkowski problem is concerned.Based on the results shown in[20],we obtain a new existence result of solutions to this problem in terms of smooth measures by using a nonlocal Gauss curvatu...In this paper,the L_(p)chord Minkowski problem is concerned.Based on the results shown in[20],we obtain a new existence result of solutions to this problem in terms of smooth measures by using a nonlocal Gauss curvature flow for p>−n with p≠0.展开更多
The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0...The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0.1 to 2)and swimming types is investigated and analyzed to better understand the swimming characteristics of microorganisms in different environments.First,as the Reynolds number increases,the effect of the inertial forces becomes significant,disrupting the squirmer's ability to maintain its theoretical velocity.Specifically,as the Reynolds number increases,the structure of the flow field around the squirmer changes,affecting its velocity of motion.Notably,the swimming velocity of the squirmer exhibits a quadratic relationship with the type of swimming and the Reynolds number.Second,the narrow tube exerts a significant inhibitory effect on the squirmer motion.In addition,although chirality does not directly affect the swimming velocity of the squirmer,it can indirectly affect the velocity by changing its motion mode.展开更多
随着电子封装微型化、多功能化的发展,三维封装已成为封装技术的主要发展方向,叠层CSP封装具有封装密度高、互连性能好等特性,是实现三维封装的重要技术。针对超薄芯片传统叠层CSP封装过程中容易产生圆片翘曲、金线键合过程中容易出现O...随着电子封装微型化、多功能化的发展,三维封装已成为封装技术的主要发展方向,叠层CSP封装具有封装密度高、互连性能好等特性,是实现三维封装的重要技术。针对超薄芯片传统叠层CSP封装过程中容易产生圆片翘曲、金线键合过程中容易出现OBOP不良、以及线弧(wire loop)的CPK值达不到工艺要求等问题,文中简要介绍了芯片减薄方法对圆片翘曲的影响,利用有限元(FEA)的方法进行芯片减薄后对悬空功能芯片金线键合(Wirebond)的影响进行分析,Film on Wire(FOW)的贴片(Die Attach)方法在解决悬空功能芯片金线键合中的应用,以及FOW贴片方式对叠层CSP封装流程的简化。采用FOW贴片技术可以达到30%的成本节约,具有很好的经济效益。展开更多
It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e^N method, es...It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e^N method, especially when the boundary layer varies significantly in the spanwise direction. The 3D-linear parabolized stability equation (3D- LPSE) approach, a 3D extension of the two-dimensional LPSE (2D-LPSE), is developed with a plane-marching procedure for investigating the instability of a 3D boundary layer with a significant spanwise variation. The method is suitable for a full Mach number region, and is validated by computing the unstable modes in 2D and 3D boundary layers, in both global and local instability problems. The predictions are in better agreement with the ones of the direct numerical simulation (DNS) rather than a 2D-eigenvalue problem (EVP) procedure. These results suggest that the plane-marching 3D-LPSE approach is a robust, efficient, and accurate choice for the local and global instability analysis in 2D and 3D boundary layers for all free-stream Mach numbers.展开更多
The squeeze flow of a rigid-plastic medium between parallel disks is considered for small gaps with partial wall slip. The stress distribution and the squeeze force between parallel disks of a rigid-plastic medium wit...The squeeze flow of a rigid-plastic medium between parallel disks is considered for small gaps with partial wall slip. The stress distribution and the squeeze force between parallel disks of a rigid-plastic medium with the following four diferent slip boundary conditions are obtained. (1) The Coulombic friction condition is applied, and the stress distribution on the wall is derived, which is linear or exponential distribution in the no-slip area or slip area. (2) It is assumed that the slip velocity at the disks increases linearly with the radius up to the rim slip velocity, with the stress distribution and the squeeze force gained. (3) The assumption that the slip velocity at the disks is related to the shear stress component is used, with the stress distribution and the squeeze force obtained, which is equivalent to the result given in (2). (4) Rational velocity components are introduced, and the stress distribution is satisfed.展开更多
In this paper,an efcient multigrid-DEIM semi-reduced-order model is developed to accelerate the simulation of unsteady single-phase compressible fow in porous media.The cornerstone of the proposed model is that the fu...In this paper,an efcient multigrid-DEIM semi-reduced-order model is developed to accelerate the simulation of unsteady single-phase compressible fow in porous media.The cornerstone of the proposed model is that the full approximate storage multigrid method is used to accelerate the solution of fow equation in original full-order space,and the discrete empirical interpolation method(DEIM)is applied to speed up the solution of Peng-Robinson equation of state in reduced-order subspace.The multigrid-DEIM semi-reduced-order model combines the computation both in full-order space and in reducedorder subspace,which not only preserves good prediction accuracy of full-order model,but also gains dramatic computational acceleration by multigrid and DEIM.Numerical performances including accuracy and acceleration of the proposed model are carefully evaluated by comparing with that of the standard semi-implicit method.In addition,the selection of interpolation points for constructing the low-dimensional subspace for solving the Peng-Robinson equation of state is demonstrated and carried out in detail.Comparison results indicate that the multigrid-DEIM semi-reduced-order model can speed up the simulation substantially at the same time preserve good computational accuracy with negligible errors.The general acceleration is up to 50-60 times faster than that of standard semi-implicit method in two-dimensional simulations,but the average relative errors of numerical results between these two methods only have the order of magnitude 10^(−4)-10^(−6)%.展开更多
Searching for the optimal cabin layout plan is an efective way to improve the efciency of the overall design and reduce a ship’s operation costs.The multitasking states of a ship involve several statuses when facing ...Searching for the optimal cabin layout plan is an efective way to improve the efciency of the overall design and reduce a ship’s operation costs.The multitasking states of a ship involve several statuses when facing diferent missions during a voyage,such as the status of the marine supply and emergency escape.The human fow and logistics between cabins will change as the state changes.An ideal cabin layout plan,which is directly impacted by the above-mentioned factors,can meet the diferent requirements of several statuses to a higher degree.Inevitable deviations exist in the quantifcation of human fow and logistics.Moreover,uncontrollability is present in the fow situation during actual operations.The coupling of these deviations and uncontrollability shows typical uncertainties,which must be considered in the design process.Thus,it is important to integrate the demands of the human fow and logistics in multiple states into an uncertainty parameter scheme.This research considers the uncertainties of adjacent and circulating strengths obtained after quantifying the human fow and logistics.Interval numbers are used to integrate them,a two-layer nested system of interval optimization is introduced,and diferent optimization algorithms are substituted for solving calculations.The comparison and analysis of the calculation results with deterministic optimization show that the conclusions obtained can provide feasible guidance for cabin layout scheme.展开更多
This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation...This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U2341202,12402333).
文摘Dual Synthetic Jets (DSJ) can directly affect the development of spray through the complex vortex structure. The mechanism of flow control on spray and its thermal management application are studied by combining experiment and simulation. The spray characteristics under different injection angles are studied, and the results show that the angle should be controlled in the range of 45°–60°, so that sufficient momentum transfer can be obtained, and meanwhile spray impingement area narrowing can be avoided. The spray characteristics under flow control of DSJ with different Reynolds numbers are studied, and the results show that Reynolds number should be controlled in the range of 2859–3574, so that strong particle streamwise acceleration and wall film disturbing can be achieved. In addition, the DSJ kinetic energy is utilized more efficiently. On the basis of previous research, this paper proposes a novel active heat pipe based on spray controlled by DSJ. The space occupancy has been reduced by more than 60%. Even in a sealed state, the active heat pipe is able to cool a hot surface with heat flux of 22.2 kW/m^(2) from 111℃ to 57℃ only in 20 s. The noise of DSJ is reduced from 85 dB to 60 dB, which is expected to promote the practical application of DSJ in thermal management.
基金supported by the National Key Re-search and Development Program of China(2021YFF0502900,2019YFC1604604)the grant of Peak Climbing Project of Foshan Hospital of Tra-ditional Chinese Medicine,Traditional Chinese Medicine Bureat of Guangdong Province Project(No.20213018)+2 种基金the Special Fund for Research on National Major Research Instruuments of China(Grant No.62027824)Scientific Research Fund of Education Department of Yunnan Province(2023Y0619)Biomedical Projects of Yun-nan Key Science and Technology Program(202302AA310046).
文摘Triple-negative bresst canær(TNBC)metastscis is particularly severe due to its aggressive nsture,leading to rapid disease progresion and significantly reduced survival rates.Rujifang(RJF),a traditional Chinese formula,has demonstrated potential anti-tumor effects and theability to inhibit TNBC metastasis.However,the efects af varying R.IF dors remain undear.This study utilized Laser-based in vino fow cytometry(IVFC)to monitor circulating tumor cells(CTCs)and evaluate the efficacy of R.IF at different doses.The results indicated that R.IF at the high dose inhibited both the number af CTC:and the formaton of metatatic foci more eflectively compared to the lower dose.TUNEL assays revealed that R.IF trentment promotes apoptosis of tumor cells,with a more pronounced effect observed at the higher dose.Immuno-fluorescence experiments demonstrated that administering a higher dose of R.IF suppreses theеxprescion of Kindlin-1 more effectively in the tumor microenvironment.Although higher doses showed enhanced efficacy,they might also lesd to an increase in side efects.These findings underscore the promise and challenges of using R.IF at high doses for anti-tumor therspy.They highlight the criticnl importance of optimizing the dose of R.JP in the treatment of TNBC and provide valuable insights for its dinical application.
基金supported by the National Natural Science Foundation of China(12201515)the National Natural Science Foundation of China(12171314)+1 种基金partially supported by the Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-02-E00087)the Shanghai Frontier Science Center of Modern Analysis。
文摘In this paper,we study the Neumann boundary value problem of the Yang-Mills α-flow over a 4-dimensional compact Riemannian manifold with boundary.We establish the short-time existence of the Yang-Millsα-flow in the framework of functional analysis and derive long-time existence and convergence results of classical solutions to the Yang-Millsα-flow,provided that theα-energy of initial connection is below some threshold.We also prove the validity of the boundary version of small energy estimates,removal of isolated singularities,and energy lower bound result for non-flat Yang-Mills connections.These results lead to the bubbling convergence of a sequence of Yang-Millsα-connections,and as an application,we demonstrate the existence of non-trivial Yang-Mills connections with Neumann boundary.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MA019)the National Natural Science Foundation of China(11871312)。
文摘In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.
文摘This is a survey of the results in[14]regarding the isoperimetric problem in the Riemannian manifold.We consider a mean curvature type flow in the Riemannian manifold endowed with a non-trivial conformal vector field,which was firstly introduced by Guan and Li[8]in space forms.This flow preserves the volume of the bounded domain enclosed by a star-shaped hypersurface and decreases the area of hypersurface under certain conditions.We will prove the long time existence and convergence of the flow.As a result,the isoperimetric inequality for such a domain is established.
基金supported by the National Natural Science Foundation of China(12171144,12231006,12122106).
文摘In this paper,the L_(p)chord Minkowski problem is concerned.Based on the results shown in[20],we obtain a new existence result of solutions to this problem in terms of smooth measures by using a nonlocal Gauss curvature flow for p>−n with p≠0.
基金Project supported by the National Natural Science Foundation of China(Nos.12132015 and 12372251)the Fundamental Research Funds for the Provincial Universities of Zhejiang of China(No.2023YW69)。
文摘The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0.1 to 2)and swimming types is investigated and analyzed to better understand the swimming characteristics of microorganisms in different environments.First,as the Reynolds number increases,the effect of the inertial forces becomes significant,disrupting the squirmer's ability to maintain its theoretical velocity.Specifically,as the Reynolds number increases,the structure of the flow field around the squirmer changes,affecting its velocity of motion.Notably,the swimming velocity of the squirmer exhibits a quadratic relationship with the type of swimming and the Reynolds number.Second,the narrow tube exerts a significant inhibitory effect on the squirmer motion.In addition,although chirality does not directly affect the swimming velocity of the squirmer,it can indirectly affect the velocity by changing its motion mode.
文摘随着电子封装微型化、多功能化的发展,三维封装已成为封装技术的主要发展方向,叠层CSP封装具有封装密度高、互连性能好等特性,是实现三维封装的重要技术。针对超薄芯片传统叠层CSP封装过程中容易产生圆片翘曲、金线键合过程中容易出现OBOP不良、以及线弧(wire loop)的CPK值达不到工艺要求等问题,文中简要介绍了芯片减薄方法对圆片翘曲的影响,利用有限元(FEA)的方法进行芯片减薄后对悬空功能芯片金线键合(Wirebond)的影响进行分析,Film on Wire(FOW)的贴片(Die Attach)方法在解决悬空功能芯片金线键合中的应用,以及FOW贴片方式对叠层CSP封装流程的简化。采用FOW贴片技术可以达到30%的成本节约,具有很好的经济效益。
基金Project supported by the National Natural Science Foundation of China(Nos.11272183,11572176,11402167,11202147,and 11332007)the National Program on Key Basic Research Project of China(No.2014CB744801)
文摘It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e^N method, especially when the boundary layer varies significantly in the spanwise direction. The 3D-linear parabolized stability equation (3D- LPSE) approach, a 3D extension of the two-dimensional LPSE (2D-LPSE), is developed with a plane-marching procedure for investigating the instability of a 3D boundary layer with a significant spanwise variation. The method is suitable for a full Mach number region, and is validated by computing the unstable modes in 2D and 3D boundary layers, in both global and local instability problems. The predictions are in better agreement with the ones of the direct numerical simulation (DNS) rather than a 2D-eigenvalue problem (EVP) procedure. These results suggest that the plane-marching 3D-LPSE approach is a robust, efficient, and accurate choice for the local and global instability analysis in 2D and 3D boundary layers for all free-stream Mach numbers.
基金Project supported by the National Natural Science Foundation of China(No.10372113).
文摘The squeeze flow of a rigid-plastic medium between parallel disks is considered for small gaps with partial wall slip. The stress distribution and the squeeze force between parallel disks of a rigid-plastic medium with the following four diferent slip boundary conditions are obtained. (1) The Coulombic friction condition is applied, and the stress distribution on the wall is derived, which is linear or exponential distribution in the no-slip area or slip area. (2) It is assumed that the slip velocity at the disks increases linearly with the radius up to the rim slip velocity, with the stress distribution and the squeeze force gained. (3) The assumption that the slip velocity at the disks is related to the shear stress component is used, with the stress distribution and the squeeze force obtained, which is equivalent to the result given in (2). (4) Rational velocity components are introduced, and the stress distribution is satisfed.
基金This study is supported by the National Natural Science Foundation of China(Nos.51904031,51936001)the Beijing Natural Science Foundation(No.3204038)the Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission(No.KZ201810017023).
文摘In this paper,an efcient multigrid-DEIM semi-reduced-order model is developed to accelerate the simulation of unsteady single-phase compressible fow in porous media.The cornerstone of the proposed model is that the full approximate storage multigrid method is used to accelerate the solution of fow equation in original full-order space,and the discrete empirical interpolation method(DEIM)is applied to speed up the solution of Peng-Robinson equation of state in reduced-order subspace.The multigrid-DEIM semi-reduced-order model combines the computation both in full-order space and in reducedorder subspace,which not only preserves good prediction accuracy of full-order model,but also gains dramatic computational acceleration by multigrid and DEIM.Numerical performances including accuracy and acceleration of the proposed model are carefully evaluated by comparing with that of the standard semi-implicit method.In addition,the selection of interpolation points for constructing the low-dimensional subspace for solving the Peng-Robinson equation of state is demonstrated and carried out in detail.Comparison results indicate that the multigrid-DEIM semi-reduced-order model can speed up the simulation substantially at the same time preserve good computational accuracy with negligible errors.The general acceleration is up to 50-60 times faster than that of standard semi-implicit method in two-dimensional simulations,but the average relative errors of numerical results between these two methods only have the order of magnitude 10^(−4)-10^(−6)%.
基金the National Natural Science Foundation of China under Grant No.51879023.
文摘Searching for the optimal cabin layout plan is an efective way to improve the efciency of the overall design and reduce a ship’s operation costs.The multitasking states of a ship involve several statuses when facing diferent missions during a voyage,such as the status of the marine supply and emergency escape.The human fow and logistics between cabins will change as the state changes.An ideal cabin layout plan,which is directly impacted by the above-mentioned factors,can meet the diferent requirements of several statuses to a higher degree.Inevitable deviations exist in the quantifcation of human fow and logistics.Moreover,uncontrollability is present in the fow situation during actual operations.The coupling of these deviations and uncontrollability shows typical uncertainties,which must be considered in the design process.Thus,it is important to integrate the demands of the human fow and logistics in multiple states into an uncertainty parameter scheme.This research considers the uncertainties of adjacent and circulating strengths obtained after quantifying the human fow and logistics.Interval numbers are used to integrate them,a two-layer nested system of interval optimization is introduced,and diferent optimization algorithms are substituted for solving calculations.The comparison and analysis of the calculation results with deterministic optimization show that the conclusions obtained can provide feasible guidance for cabin layout scheme.
基金supported by the National Natural Science Foundation of China(Nos.52274038,5203401042174143)+1 种基金the Taishan Scholars Project(No.tsqnz20221140)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)of China(No.PLN2020-5)。
文摘This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production.