This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shif...This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.展开更多
Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key ...Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key techniques: a low-complexity cyclic redundancy check(CRC) aided list successive cancellation(CALSC) decoder and a soft information calculation method. At the relay node, a low-complexity CALSC decoder is designed to reduce the computational complexity by adjusting the list size according to the reliabilities of decoded bits. Based on the path probability metric of the CALSC decoder, we propose a method to compute the soft information of the decoded bits in CALSC. Simulation results show that our proposed scheme outperforms the soft DF based on low-density parity-check codes and the soft DF with belief propagation or soft cancellation decoder, especially in the case when the source-relay channel is at the high signal-to-ratio region.展开更多
This paper investigates rate adaptation schemes for decoding-and-forward (DF) relay system based on random projections codes (RPC). We consider a classic three node relay system model, where relay node performs on hal...This paper investigates rate adaptation schemes for decoding-and-forward (DF) relay system based on random projections codes (RPC). We consider a classic three node relay system model, where relay node performs on half-duplex mode. Then, we give out receiving diversity relay scheme and coding diversity relay scheme, and present their jointly decoding methods. Furthermore, we discuss the performance of the two schemes with different power allocation coefficients. Simulations show that our relay schemes can achieve different gain with the help of relay node. And, we should allocate power to source node to just guarantee relay node can decode successfully, and allocate remain power to relay node as far as possible. In this way, this DF relay system not only achieves diversity gain, but also achieves higher and smooth spectrum efficiency.展开更多
Network Coding (NC) is a recent technique which is used to improve the transmission data rate and the power efficiency. These goals are obtained by combining data together before transmitting them, resulting to less t...Network Coding (NC) is a recent technique which is used to improve the transmission data rate and the power efficiency. These goals are obtained by combining data together before transmitting them, resulting to less transmitted data that carry the same amount of information. NC research work over the physical layer and the upper layers are popular and needed to be more investigated. In this paper, we propose a practical system of large-number of connected multi-source network coding (LMSNC), at the physical layer that exploits the broadcast nature of the wireless channel, using the practical and bandwidth-efficient schemes decode-and-forward (DF) and then compare it with Amplify and Forward (AF). The theoretical analysis and the simulation results show the effect of the noise when it cumulates in AF system and how DF is solving this severe default. Moreover, we consider the MSNC for Small-number of connected sources (SMSNC) and the two-way communication setup where two users exchange their information over an intermediate network node (ideally called Base Station), as two reference cases to compare with. With SMSNC, the number of necessary downlink transmissions from the intermediate node to the users is reduced, and thus the throughput is increased. Simulation results obtained using high-performance non-binary turbo codes, based on Partial Unit Memory (PUM) codes (4, 2, 1, 4) and (8, 4, 3, 8);confirm that combining PUM Turbo Code (PUMTC) and NC in the proposed MSNC setup gives almost the same BER performance as that for SMSNC at the small number of processing steps mainly when PUMTC (8, 4, 3, 8) is performed, which is required to retrieve the received coded messages. In the scenario of AF, combining packets results to cumulate the noise, which justifies the reason we decided to increase the number of transmitted coded messages in the network, i.e., the BER performance improves when sending extra coded messages. Finally, the possibility for a trade-off among BER, data rate and the number of transmitted coded messages is shown for LMSNC through graphics and simulation results.展开更多
The existing physical-layer network coding(PNC) can be grouped into three generic schemes,which are XOR-based PNC,superposition-based PNC,and denoising-and-forward(DNFbased) PNC.Generally speaking,DNF-based PNC has be...The existing physical-layer network coding(PNC) can be grouped into three generic schemes,which are XOR-based PNC,superposition-based PNC,and denoising-and-forward(DNFbased) PNC.Generally speaking,DNF-based PNC has better performance of rate pair region compared with the other two schemes when the transmission is symmetric.When the transmission is asymmetric,its performance is degraded severely.However,superposition-based PNC does not have that limitation even if its rate pair region performance is inferior to that of DNF-based PNC and XOR-based PNC.In this paper,we focus on the combined use of the two PNC schemes,superposition-based PNC and DNFbased PNC,and present a novel PNC scheme called joint superposition and DNF physical-layer network coding(JSDNF-based PNC) as well as the information theory analysis of the achievable rate pair region.At the same time,in the proposed scheme,an adaptive power allocation factor is introduced.By changing the power factor,the system can adapt its rate pair region flexibly.The numerical results show that the proposed scheme achieves the largest rate pair region when the rate difference of two source signals is very large.At the same time,the support on asymmetric transmission is also an important profit of the scheme.展开更多
The Base Station (BS) or access point is the building block of wireless networks, so, we propose exploiting it together with the Network Coding (NC) principle. NC suffers from the complexity of the decoding processes,...The Base Station (BS) or access point is the building block of wireless networks, so, we propose exploiting it together with the Network Coding (NC) principle. NC suffers from the complexity of the decoding processes, i.e., complicated Jordan Gaussian Elimination (JGE) processes. So, this paper proposes a deterministic NC algorithm to reduce the number of sequential network decoding steps, and hence minimizing the complexity of JGE process resulting to better time delay and processing time. We propose an algorithm that combines higher number of the transmitted packets resulting to better data-rate but worse Bet Error Rate (BER). However, using such strong Forward error correction channel code, which is Partial Unit Memory Turbo Code (PUMTC) results to minimize the losses in the BER to a very acceptable lever, in fact, in Decode-and-Forward (DF) BS, the BER can be regarded as minimum. Simulation results, for both Amplify-and-Forward (AF) and DF BS schemes using PUMTC based on (8, 4, 3, 8) component codes, confirm that using PUMTC mitigates the problem of noise aggregation resulting from applying NC in the proposed schemes.展开更多
Providing efficient packet delivery in vehicular ad hoc networks (VANETs) is particularly challenging due to the vehicle move- ment and lossy wireless channels. A data packet can be lost at a forwarding node even wh...Providing efficient packet delivery in vehicular ad hoc networks (VANETs) is particularly challenging due to the vehicle move- ment and lossy wireless channels. A data packet can be lost at a forwarding node even when a proper node is selected as the for- warding node. In this paper, we propose a loss-tolerant scheme for unicast routing protocols in VANETs. The proposed scheme employs multiple forwarding nodes to improve the packet reception ratio at the forwarding nodes. The scheme uses network coding to reduce the number of required transmissions, resulting in a significant improvement in end-to-end packet delivery ratio with low message overhead. The effectiveness of the proposed scheme is evaluated by using both theoretical analysis and computer sim-展开更多
文摘This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.
基金supported by the National Natural Science Foundation of China(No.61171099,No.61671080),Nokia Beijing Bell lab
文摘Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key techniques: a low-complexity cyclic redundancy check(CRC) aided list successive cancellation(CALSC) decoder and a soft information calculation method. At the relay node, a low-complexity CALSC decoder is designed to reduce the computational complexity by adjusting the list size according to the reliabilities of decoded bits. Based on the path probability metric of the CALSC decoder, we propose a method to compute the soft information of the decoded bits in CALSC. Simulation results show that our proposed scheme outperforms the soft DF based on low-density parity-check codes and the soft DF with belief propagation or soft cancellation decoder, especially in the case when the source-relay channel is at the high signal-to-ratio region.
文摘This paper investigates rate adaptation schemes for decoding-and-forward (DF) relay system based on random projections codes (RPC). We consider a classic three node relay system model, where relay node performs on half-duplex mode. Then, we give out receiving diversity relay scheme and coding diversity relay scheme, and present their jointly decoding methods. Furthermore, we discuss the performance of the two schemes with different power allocation coefficients. Simulations show that our relay schemes can achieve different gain with the help of relay node. And, we should allocate power to source node to just guarantee relay node can decode successfully, and allocate remain power to relay node as far as possible. In this way, this DF relay system not only achieves diversity gain, but also achieves higher and smooth spectrum efficiency.
文摘Network Coding (NC) is a recent technique which is used to improve the transmission data rate and the power efficiency. These goals are obtained by combining data together before transmitting them, resulting to less transmitted data that carry the same amount of information. NC research work over the physical layer and the upper layers are popular and needed to be more investigated. In this paper, we propose a practical system of large-number of connected multi-source network coding (LMSNC), at the physical layer that exploits the broadcast nature of the wireless channel, using the practical and bandwidth-efficient schemes decode-and-forward (DF) and then compare it with Amplify and Forward (AF). The theoretical analysis and the simulation results show the effect of the noise when it cumulates in AF system and how DF is solving this severe default. Moreover, we consider the MSNC for Small-number of connected sources (SMSNC) and the two-way communication setup where two users exchange their information over an intermediate network node (ideally called Base Station), as two reference cases to compare with. With SMSNC, the number of necessary downlink transmissions from the intermediate node to the users is reduced, and thus the throughput is increased. Simulation results obtained using high-performance non-binary turbo codes, based on Partial Unit Memory (PUM) codes (4, 2, 1, 4) and (8, 4, 3, 8);confirm that combining PUM Turbo Code (PUMTC) and NC in the proposed MSNC setup gives almost the same BER performance as that for SMSNC at the small number of processing steps mainly when PUMTC (8, 4, 3, 8) is performed, which is required to retrieve the received coded messages. In the scenario of AF, combining packets results to cumulate the noise, which justifies the reason we decided to increase the number of transmitted coded messages in the network, i.e., the BER performance improves when sending extra coded messages. Finally, the possibility for a trade-off among BER, data rate and the number of transmitted coded messages is shown for LMSNC through graphics and simulation results.
基金supported in part by National Natural Science Foundation of China under Grant No. 61071090Postgraduate Innovation Program of Scientific Research of Jiangsu Province under Grant No. CX10B -184Z
文摘The existing physical-layer network coding(PNC) can be grouped into three generic schemes,which are XOR-based PNC,superposition-based PNC,and denoising-and-forward(DNFbased) PNC.Generally speaking,DNF-based PNC has better performance of rate pair region compared with the other two schemes when the transmission is symmetric.When the transmission is asymmetric,its performance is degraded severely.However,superposition-based PNC does not have that limitation even if its rate pair region performance is inferior to that of DNF-based PNC and XOR-based PNC.In this paper,we focus on the combined use of the two PNC schemes,superposition-based PNC and DNFbased PNC,and present a novel PNC scheme called joint superposition and DNF physical-layer network coding(JSDNF-based PNC) as well as the information theory analysis of the achievable rate pair region.At the same time,in the proposed scheme,an adaptive power allocation factor is introduced.By changing the power factor,the system can adapt its rate pair region flexibly.The numerical results show that the proposed scheme achieves the largest rate pair region when the rate difference of two source signals is very large.At the same time,the support on asymmetric transmission is also an important profit of the scheme.
文摘The Base Station (BS) or access point is the building block of wireless networks, so, we propose exploiting it together with the Network Coding (NC) principle. NC suffers from the complexity of the decoding processes, i.e., complicated Jordan Gaussian Elimination (JGE) processes. So, this paper proposes a deterministic NC algorithm to reduce the number of sequential network decoding steps, and hence minimizing the complexity of JGE process resulting to better time delay and processing time. We propose an algorithm that combines higher number of the transmitted packets resulting to better data-rate but worse Bet Error Rate (BER). However, using such strong Forward error correction channel code, which is Partial Unit Memory Turbo Code (PUMTC) results to minimize the losses in the BER to a very acceptable lever, in fact, in Decode-and-Forward (DF) BS, the BER can be regarded as minimum. Simulation results, for both Amplify-and-Forward (AF) and DF BS schemes using PUMTC based on (8, 4, 3, 8) component codes, confirm that using PUMTC mitigates the problem of noise aggregation resulting from applying NC in the proposed schemes.
基金supported in part by JSPS KAKENHI under Grant Number25730053
文摘Providing efficient packet delivery in vehicular ad hoc networks (VANETs) is particularly challenging due to the vehicle move- ment and lossy wireless channels. A data packet can be lost at a forwarding node even when a proper node is selected as the for- warding node. In this paper, we propose a loss-tolerant scheme for unicast routing protocols in VANETs. The proposed scheme employs multiple forwarding nodes to improve the packet reception ratio at the forwarding nodes. The scheme uses network coding to reduce the number of required transmissions, resulting in a significant improvement in end-to-end packet delivery ratio with low message overhead. The effectiveness of the proposed scheme is evaluated by using both theoretical analysis and computer sim-