Hemipelagic to pelagic(H/P)marls,representing pelitic deposits,accumulated within the foredeep sub-basin of the Dinaric Foreland Basin(northern Neotethyan margin,present-day Croatia)during the Middle to Late Eocene.Sy...Hemipelagic to pelagic(H/P)marls,representing pelitic deposits,accumulated within the foredeep sub-basin of the Dinaric Foreland Basin(northern Neotethyan margin,present-day Croatia)during the Middle to Late Eocene.Syn-sedimentary tectonic movements,paleogeographic position and exchanges of short-lived hyperthermal episodes affected the sedimentation and related mineral and geochemical record of these deposits.Mineral(clay)assemblages bear signature of prevailing physical weathering with significant illite and chlorite content,but climatic seasonality is suggested by smectite-interlayered phases and sporadical increase of kaolinite content.Illite crystallinity varies significantly,and the lowest crystallinity is recorded by the Lutetian samples.Illite chemistry index is always bellow 0.5,being characteristic for Fe-Mg-rich illite.The geochemical records are the most prominent(CIA up to 76,CIW up to 91)for the Istrian Lutetian(42.3-40.5 Ma),but also for Priabonian(35.8-34.3 Ma)samples of Hvar Island.The ICV values(the lowest 1.40 and the highest 10.85)of all studied samples fall above PAAS(ICV=0.85)and point to their chemical immaturity.The Ga/Rb ratios are lower than 0.2 and K_(2)O/Al_(2)O_(3) ratios are also low(0.16-0.22),implying transition between cold and dry,and warm and humid climate,obviously trending among several warming episodes.展开更多
Strong tectonic activities and diagenetic evolution encourage the development of natural fractures as typical features in deep tight sandstone reservoirs of foreland thrust belts.This study focused on the Jurassic in ...Strong tectonic activities and diagenetic evolution encourage the development of natural fractures as typical features in deep tight sandstone reservoirs of foreland thrust belts.This study focused on the Jurassic in the southern Junggar Basin to comprehensively analyze the fracture characteristics and differential distribution and,ultimately,addressed the controlling mechanisms of tectonism and diagenesis on fracture effectiveness.Results revealed that the intensity of tectonic activities determines the complexity of tectonic fracture systems to create various fracture orientations when they have been stronger.The intense tectonic deformation would impact the stratum occurrence,which results in a wide range of fracture dip angles.Moreover,as the intensity of tectonic activities and deformations weakens,the scale and degree of tectonic fractures would decrease continuously.The control of tectonism on fracture effectiveness is reflected in the notable variations in the filling of multiple group fractures developed during different tectonic activity periods.Fractures formed in the early stages are more likely to be filled with minerals,causing their effectiveness to deteriorate significantly.Additionally,the strong cementation in the diagenetic evolution can cause more fractures to be filled with minerals and become barriers to fluid flow,which is detrimental to fracture effectiveness.However,dissolution is beneficial in improving their effectiveness by increasing fracture aperture and their connectivity to the pores.These insights can refine the development pattern of natural fractures and contribute to revealing the evolutionary mechanisms of fracture effectiveness in deep tight sandstone reservoirs of foreland thrust belts.展开更多
The Triassic Xujiahe Formation in the slope zone of the Sichuan foreland basin is a new field of continental tight gas exploration in recent years.The fourth member of the Xujiahe Formation(Xu4 Member),the major inter...The Triassic Xujiahe Formation in the slope zone of the Sichuan foreland basin is a new field of continental tight gas exploration in recent years.The fourth member of the Xujiahe Formation(Xu4 Member),the major interval in the Jianyang Block of the Tianfu gas field in the basin,is characterized by considerable buried depth,tight reservoirs,and strong heterogeneity.By using cast thin section,X-ray diffraction(XRD),scanning electron microscopy(SEM),fluid inclusion thermometry,and core analysis,the reservoir rock types,dominant diageneses,diagenetic history,and controls on high-graded reservoirs were investigated.It is found that the Xu4 Member in Jianyang mainly consists of lithic feldspar sandstones and feldspar lithic sandstones,followed by lithic quartz sandstones.High-energy hydrodynamic conditions in the microfacies of underwater distributary channels and mouth bars are beneficial to the preservation of primary pores and the occurrence of secondary pores,and there are no significant differences in petrophysical properties between these two microfacies.Compaction and calcareous cementation are the dominant controls on reservoir porosity decrease in the Xujiahe Formation;corrosion is the major contributor to porosity increase by generating secondary dissolved pores,e.g.intragranular dissolved pores and intergranular dissolved pores,as major reservoir space in the study area.Fracture zones around the faults inside the Xujiahe Formation(fourth‒order faults)are favorable for proximal tight gas accumulation,preservation,and production.The research findings have been successfully applied to explore the Xujiahe Formation in the slope zone of the Sichuan foreland basin.They can be referential for other similar tight sandstone gas accumulations.展开更多
We seek to understand lithospheric rheology by mapping continental earthquake depths relative to Moho depth,across the entire India/Asia convergent orogen,and eventually worldwide.Such mapping has particular value in ...We seek to understand lithospheric rheology by mapping continental earthquake depths relative to Moho depth,across the entire India/Asia convergent orogen,and eventually worldwide.Such mapping has particular value in geothermometry,and potentially in identifying regions of delamination.How:We are extending our Sn/Lg method beyond amplitude ratios of regional seismic phases measured on arrays(array Sn/Lg method,Wang and Klemperer,2021)to include frequency proxies for earthquake depth relative to Moho(Wang&Klemperer,2024a,b;Harris et al.,2024).展开更多
A sedimentological investigation was carried out to reconstruct the paleogeography of the Zagros Foreland Basin.Based on the study of more than 1000 rock samples,nine carbonate microfacies and three terrigenous facies...A sedimentological investigation was carried out to reconstruct the paleogeography of the Zagros Foreland Basin.Based on the study of more than 1000 rock samples,nine carbonate microfacies and three terrigenous facies were identified.The study reveals that the Maastrichtian succession was deposited in a widespread homoclinal ramp in the High Zagros Basin.Three(Gandom Kar area),two(Ardal area),seven(Gardbishe area),five(Shirmard area),two(Kuh-e-Kamaneh area),three(Kuh-e-Balghar area),and six(Murak area)of depositional sequences(3rd order)were identified.The thickness of the lowstand systems tract(LST)due to activities of local faults and subsidence in the southeast is more than in the central and northwest of the High Zagros Basin during the Early and Early Middle Maastrichtian.During the Middle Maastrichtian,the shallow and deep marine deposits were formed during the transgressive systems tract(TST)and highstand systems tract(HST)in this basin and the rate of subsidence in the center of this basin(Gardbishe area)is higher than in other areas and the platform was drowned in this area.The falling relative sea-level due to activities of local faults led to that marine deposits were absent in all parts of the High Zagros Basin(except the south part)during the Late Maastrichtian.Paleogeographical studies on the Zagros Basin during the Late Campanian-Maastrichtian showed the following results:shallow marine environments were developed in the southeast of this basin,and the turbidite,delta,and fluvial environments in the northwest were developed more than in other areas.展开更多
This study integrates field outcrop profiles,drilling cores,2D seismic profiles,and 3D seismic data of key areas to analyze the Triassic tectonic-sequence stratigraphy in the Kuqa foreland basin,and investigates the i...This study integrates field outcrop profiles,drilling cores,2D seismic profiles,and 3D seismic data of key areas to analyze the Triassic tectonic-sequence stratigraphy in the Kuqa foreland basin,and investigates the impact of episodic thrust structures on sedimentary evolution and source rock distribution.(1)The Kuqa foreland basin has experienced stages of initial strong,weakened activities,relaxation and inactivity of episodic thrusting,resulting in the identification of 4 second-order sequences(Ehebulake Formation,Karamay Formation,Huangshanjie Formation,Taliqike Formation)and 11 third-order sequences(SQ1-SQ11)in the Triassic strata.Each sequence or secondary sequence displays a“coarse at the bottom and fine at the top”pattern due to the influence of secondary episodic thrust activity.(2)The episodic thrusting is closely linked to regional sequence patterns,deposition and source rock formation and distribution.The sedimentary evolution in the Triassic progresses from fan delta to braided river delta,lake,braided river delta,and meandering river delta,corresponding to the initial strong to the inactivity stages of episodic thrusting.The development stage of thick,coarse-grained sandy conglomerate reservoirs aligns with the strong to weakened thrust activities,while the source rock formation period coincides with the relaxation to inactivity stages.(3)Controlled by the intensity and stages of episodic thrust activity,the nearly EW trending thrust fault significantly thickened the footwall source rock during the Huangshanjie Formation,becoming the development center of Triassic source rock,and experienced multiple overthrust nappes in the soft stratum of the source rock,showing“stacked style”distribution.(4)The deep layers of the Kuqa foreland basin have the foundation and conditions necessary for the formation of substantial gas reservoirs,capable of forming various types of reservoirs such as self-generating and self-storing lithology,lower generating and upper storing fault block-lithology,and stratigraphic unconformity.This area holds significant importance for future gas exploration efforts aimed at enhancing reserves and production capabilities.展开更多
The distribution of Eocene-Oligocene turbidite facies in the Pindos foreland and the paleocurrent directions of submarine fan deposits,of the Peloponnesus area,document the proximal part of an underfilled foreland bas...The distribution of Eocene-Oligocene turbidite facies in the Pindos foreland and the paleocurrent directions of submarine fan deposits,of the Peloponnesus area,document the proximal part of an underfilled foreland basin.The definition of Pindos foreland basin attributes sediment accommodation solely to flexural subsidence driven by topographic load of the thrust belt and sediment loads in the foreland basin.The restriction of the coarse grained deposits and the basin underfilled conditions are related to the Pindos foreland evolution,and especially to the internal thrusting and produced intrabasinal highs.The presence of strike-slip faults can affect the geometry of a basin by causing changes in depth and width,resulting in the transformation from a uniform to non-uniform configuration.This change has an intensive impact on depositional environments along the basin axis.Strike-slip faults that cross-cut intrabasinal highs produce pathways for the sediment distribution on both sides of the highs.Distributary channels that discharge into the basin are perpendicular to its axis and shift axially at the basin floor.The strikeslip and thrust faulting operated contemporaneously for much of their active periods,although it appears that thrust faulting,initiated slightly earlier than strike-slip faulting.展开更多
Field investigation combined with detailed petrographic observation indicate that abundant oil,gas,and solid bitumen inclusions were entrapped in veins and cements of sedimentary rocks in the Dabashan foreland,which w...Field investigation combined with detailed petrographic observation indicate that abundant oil,gas,and solid bitumen inclusions were entrapped in veins and cements of sedimentary rocks in the Dabashan foreland,which were used to reconstruct the oil and gas migration history in the context of tectonic evolution.Three stages of veins were recognized and related to the collision between the North China block and the Yangtze block during the Indosinian orogeny from Late Triassic to Early Jurassic(Dl),the southwest thrusting of the Qinling orogenic belt towards the Sichuan basin during the Yanshanian orogeny from Late Jurassic to Early Cretaceous(D2),and extensional tectonics during Late Cretaceous to Paleogene(D3),respectively.The occurrences of hydrocarbon inclusions in these veins and their homogenization temperatures suggest that oil was generated in the early stage of tectonic evolution,and gas was generated later,whereas solid bitumen was the result of pyrolysis of previously accumulated hydrocarbons.Three stages of hydrocarbon fluid inclusions were also identified in cements of carbonates and sandstones of gas beds in the Dabashan foreland belt and the Dabashan foreland depression(northeastern Sichuan basin),which recorded oil/gas formation,migration,accumulation and destruction of paleo-reservoirs during the D2.Isotopic analysis of hydrocarbon fluid inclusions contained in vein minerals shows that δ^(13)C_1 of gas in fluid inclusions ranges from-17.0‰ to-30.4‰(PDB) and δD from-107.7‰ to-156.7‰(SMOW),which indicates that the gas captured in the veins was migrated natural gas which may be correlated with gas from the gas-fields in northern Sichuan basin.Organic geochemical comparison between bitumen and potential source rocks indicates that the Lower Cambrian black shale and the Lower Permian black limestone were the most possible source rocks of the bitumen.Combined with tectonic evolution history of the Dabashan foreland,the results of this study suggest that oil was generated from the Paleozoic source rocks in the Dabashan area under normal burial thermal conditions before Indosinian tectonics and accumulated to form paleo-reservoirs during Indosinian collision between the North China block and the Yangtz block.The paleo-reservoirs were destroyed during the Yanshanian tectonic movement when the Dabashan foreland was formed.At the same time,oil in the paleo-reservoirs in the Dabashan foreland depression was pyrolyzed to transform to dry gas and the residues became solid bitumen.展开更多
Himalaya and its foreland acted as a coupled system that responded to the climate variability and evolved as a thrust and fold belt.The river systems draining the Himalaya,the Ganga foreland act as an artery that help...Himalaya and its foreland acted as a coupled system that responded to the climate variability and evolved as a thrust and fold belt.The river systems draining the Himalaya,the Ganga foreland act as an artery that helps registering climate and tectonic signals into its geomorphology and sedimentary history.The paper discusses the late Quaternary landscape evolution of the mountain and its foreland and reviews the published literature in the context.展开更多
Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded...Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.展开更多
The Dabashan orocline is situated in the northwestern margin of the central Yangtze block,central China.Previous studies have defined the orthogonal superposed folds growing in its central-western segment thereby conf...The Dabashan orocline is situated in the northwestern margin of the central Yangtze block,central China.Previous studies have defined the orthogonal superposed folds growing in its central-western segment thereby confirming its two-stage tectonic evolution history.Geological mapping has revealed that more types of superposed folds have developed in the eastern segment of the orocline,which probably provides more clues for probing the structure and tectonic history of the Dabashan orocline.In this paper,based on geological mapping,structural measurements and analyses of deformation,we have identified three groups of folds with different trends (e.g.NW-,NE-and nearly E-trending folds) and three types of structural patterns of superposed folds in the eastern Dabashan foreland (e.g.syn-axial,oblique,and conjunctional superposed folds).In combination with geochronological data,we propose that the synaxial superposed folds are due to two stages of ~N-S shortening in the west and north of the Shennongjia massif,and that oblique superposed folds have been resulted from the superposition of the NW-and NE-trending folds onto the early ~ E-W folds in the east of the Shennongjia massif in the late Jurassic to early Cretaceous.The conjunctional folds are composed of the NW-and NE-trending folds,corresponding to the regional-scale dual-orocline in the eastern Sichuan as a result of the southwestward expansion of the Dabashan foreland during late Jurassic to early Cretaceous,coeval with the northwestward propagation of the Xuefengshan foreland.Integration of the structure and geochronology of the belt shows that the Dabashan orocline is a combined deformation belt primarily experiencing a twostage tectonic evolution history in Mesozoic,initiation of the Dabashan orocline as a foreland basin along the front of the Qinling orogen in late Triassic to early Jurassic due to collisional orogeny,and the final formation of the Dabashan orocline owing to the southwestward propagation of the Qinling orogen during late Jurassic to early Cretaceous intra-continental orogeny.Our studies provide some evidences for understanding the structure and deformation of the Dabashan orocline.展开更多
The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qili...The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.展开更多
Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon a...Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon accumulation in the western foreland basins. We determined the time of neotectonic movement in the Kuqa Foreland Basin, which began from the Neogene, and analyzed the patterns of movement, which were continuous and fast subsidence in the vertical direction and intense lateral compression. The structure styles are that the faulting is weakened and the folding is strengthened gradually from north to south. We studied the control of neotectonic movement on the hydrocarbon accumulation process and model in the Kuqa Foreland Basin with basin simulation technique. The largest subsidence rate of the Kuqa Foreland Basin reached 1,200 m/Ma during the neotectonic movement, leading to rapid maturing of source rock within 5 Ma and a large quantity of hydrocarbon being generated and expelled. The thick neotectonic strata can form high quality reservoirs with the proved gas and oil reserves accounting for 5% and 27% of the total reserves, respectively. 86% of the structural traps were formed in the neotectonic movement period. The faults formed during the neotectonic movement serve as important migration pathways and they exist in the region where the hydrocarbon reservoirs are distributed. Abnormally high pressure caused by the intense lateral compression, thick neotectonic strata deposition and rapid hydrocarbon generation provide driving force for hydrocarbon migration. The accumulation elements match each other well over a short period, leading to many large gas fields formed later in the Kuqa Foreland Basin.展开更多
The buried depth of the gas-producing reservoir in the Kuqa foreland thrust belt of the Tarim Basin exceeds 6000 m.The average matrix porosity of the reservoir is 5.5%,and the average matrix permeability is 0.128×...The buried depth of the gas-producing reservoir in the Kuqa foreland thrust belt of the Tarim Basin exceeds 6000 m.The average matrix porosity of the reservoir is 5.5%,and the average matrix permeability is 0.128×10^(−3)μm^(2).In order to reveal the characteristics and efectiveness of ultra-deep fractures and their efects on reservoir properties and natural gas production,outcrops,cores,thin section,image logs and production testing data are used to investigate the efectiveness of tectonic fractures in ultra-deep reservoirs in the Kuqa foreland thrust zone,and the corresponding geological signifcance for oil and gas exploration and development are discussed.Tectonic fractures in the thrust belt include EW-trending high-angle tensile fractures and NS-trending vertical shear fractures.The former has a relatively high flling rate,while the latter is mostly unflled.Micro-fractures are usually grain-piercing-through cracks with width of 10-100 microns.In the planar view,the efective fractures are concentrated in the high part and wing zones of the long axis of the anticline,and along the vertical direction,they are mainly found in the tensile fracture zone above the neutral plane.The adjustment fracture zone has the strongest vertical extension abilities and high efectiveness,followed by the nearly EW longitudinal tensile fracture zone,and the netted fracture zone with multiple dip angles.The efectiveness of fracture is mainly controlled by fracture aperture and flling degrees.Efective fractures can increase reservoir permeability by 1-2 orders of magnitude.The higher part of the anticline is associated with high tectonic fracture permeability,which control enrichment and high production of natural gas.The netted vertical open fractures efectively communicate with pores and throats of the reservoir matrix,which forms an apparent-homogenous to medium-heterogeneous body that is seen with high production of natural gas sustained for a long term.展开更多
Natural bitumen is the evolutionary residue of hydrocarbon of sedimentary organic matter. Several kinds of bitumen with different occurrences, including bitumen in source rock, migration bitumen filled in fault, oil-b...Natural bitumen is the evolutionary residue of hydrocarbon of sedimentary organic matter. Several kinds of bitumen with different occurrences, including bitumen in source rock, migration bitumen filled in fault, oil-bed bitumen and paleo-reservoir bitumen, are distributed widely in the Dabashan foreland. These kinds of bitumen represent the process of oil/gas formation, migration and accumulation in the region. Bitumen in source rock fiUed in fractures and stylolite and experienced deformation simultaneously together with source rock themselves. It indicated that oil/gas generation and expelling from source rock occurred under normal buried thermal conditions during prototype basin evolution stages prior to orogeny. Occurrences of bitumen in source rock indicated that paleo- reservoir formation conditions existed in the Dabashan foreland. Migration bitumen being widespread in the fault revealed that the fault was the main channel for oil/gas migration, which occurred synchronously with Jurassic foreland deformation. Oil-bed bitumen was the kind of pyrolysis bitumen that distributed in solution pores of reservoir rock in the Dabashan foreland depression, the northeastern Sichuan Basin. Geochemistry of oil-bed bitumen indicated that natural gas that accumulated in the Dabashan foreland depression formed from liquid hydrocarbon by pyrolysis process. However, paleo-reservior bitumen in the Dabashan forleland was the kind of degradation bitumen that formed from liquid hydrocarbon within the paleo-reservior by oxidation, alteration and other secondary changes due to paleo-reservior damage during tectonics in the Dabashan foreland. In combination with the tectonic evolution of the Dabashan foreland, it is proposed that the oil/gas generated, migrated and accumulated to form the paleo-reservoir during the Triassic Indosinian tectonic movement. Jurassic collision orogeny, the Yanshan tectonic movement, led to intracontinental orogeny of the Dabashan area accompanied by geofluid expelling and paleo-reservoir damage in the Dabashan foreland. The present work proposed that there is liquid hydrocarbon exploration potential in the Dabashan foreland, while there are prospects for the existence of natural gas in the Dabashan foreland depression.展开更多
The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Ol...The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.展开更多
There are two plays in the Dabashan foreland tectonic belt: the upper and the lower plays. The lower play experienced one sedimentary hydrodynamic stage, two burial hydrodynamic stages, two tectonic hydrodynamic stag...There are two plays in the Dabashan foreland tectonic belt: the upper and the lower plays. The lower play experienced one sedimentary hydrodynamic stage, two burial hydrodynamic stages, two tectonic hydrodynamic stages and two infiltration hydrodynamic stages from the Sinian to the Cenozoic, while the upper play had one sedimentary hydrodynamic stage, one burial hydrodynamic stage, two tectonic hydrodynamic stages and one infiltration hydrodynamic stage from the Permian to the Cenozoic. Extensive flows of both sedimentary water, including hydrocarbons, and deep mantle fluid occurred in the Chengkou faults during collision orogeny in the Middle-Late Triassic Indosinian orogeny, and fluid flow was complicated during intracontinental orogeny in the Middle-Late Jurassic. In addition to these movements, infiltration and movement of meteoric water took place in the Chengkou faults, whereas in the covering-strata decollement tectonic belt, extensive sedimentary water flow (including hydrocarbons) occurred mainly in the Zhenba and Pingba faults. During the stage of rapid uplift and exhumation from the Cretaceous to the Cenozoic, the fluid flow was characterized mainly by infiltration of meteoric water and gravity-induced flow caused by altitude difference, whereas sedimentary water flow caused by tectonic processes was relatively less significant. Sedimentary water flow was more significant to the lower play in hydrocarbon migration and accumulation during collision orogeny in the Middle-Late Triassic Indosinian orogeny, but its influence is relatively slight on the upper play. On one hand, hydrodynamics during intracontinental orogeny in the Middle-Late Jurassic adjusted, reformed or oven destroyed oil reservoirs in the lower play; on the other hand, it drove large amounts of hydrocarbons to migrate laterally and vertically and is favorable for hydrocarbon accumulation. Infiltration hydrodynamics mainly adjusted and destroyed oil reservoirs from the Cretaceous to the Cenozoic.展开更多
Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable ...Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable exploration areas, the foreland basins in central and western China can be divided into three structural types: superimposed, retrogressive and reformative foreland basin (or thrust belt), each with distinctive petroleum system characteristics in their petroleum system components (such as the source rock, reservoir rock, caprock, time of oil and gas accumulation, the remolding of oil/gas reservoir after accumulation, and the favorable exploration area, etc.). The superimposed type foreland basins, as exemplified by the Kuqa Depression of the Tarim Basin, characterized by two stages of early and late foreland basin development, typically contain at least two hydrocarbon source beds, one deposited in the early foreland development and another in the later fault-trough lake stage. Hydrocarbon accumulations in this type of foreland basin often occur in multiple stages of the basin development, though most of the highly productive pools were formed during the late stage of hydrocarbon migration and entrapment (Himalayan period). This is in sharp contrast to the retrogressive foreland basins (only developing foreland basin during the Permian to Triassic) such as the western Sichuan Basin, where prolific hydrocarbon source rocks are associated with sediments deposited during the early stages of the foreland basin development. As a result, hydrocarbon accumulations in retrogressive foreland basins occur mainly in the early stage of basin evolution. The reformative foreland basins (only developing foreland basin during the Himalayan period) such as the northern Qaidam Basin, in contrast, contain organic-rich, lacustrine source rocks deposited only in fault-trough lake basins occurring prior to the reformative foreland development during the late Cenozoic, with hydrocarbon accumulations taking place relatively late (Himalayan period). Therefore, the ultimate hydrocarbon potentials in the three types of foreland basins are largely determined by the extent of spatial and temporal matching among the thrust belts, hydrocarbon source kitchens, and regional and local caprocks.展开更多
The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existenc...The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existence of abnormally high pressure and various reservoir-cap combinations developed at different times provide favorable conditions for trapping oil and gas. Taking the theory of petroleum systems as a guide, and beginning with research on tectonics, sedimentary history, distribution and evolution of source rocks, reservoir evolution, hydraulic force distribution, and hydrocarbon migration, analysis and study of static factors like source rocks, reservoirs and cap rocks, and dynamic factors such as hydrocarbon generation, migration, and accumulation revealed the characteristics of the Upper Triassic petroleum system in western Sichuan province. The deepbasin gas in the central hydrocarbon kitchen of the Upper Triassic, structural-lithological combination traps on the surrounding slopes, and the structural traps of the Indo-Chinese-Yangshan paleohighs, are potential plays. The relatively well- developed fault zones in the southern segment of the Longmengshan foothill belt are favorable Jurassic gas plays. Pengshan-Xinjin, Qiongxi, and Dayi are recent exploration targets for Jurassic oil/gas reservoirs.展开更多
Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin sub...Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.展开更多
基金supported by Croatian Science Foundation Research Project Dinaridic Foreland Basin between Two Eocene Thermal Optima:A Possible Scenario for the Northern Adriatic BREEMECO(No.2019-04-5775)。
文摘Hemipelagic to pelagic(H/P)marls,representing pelitic deposits,accumulated within the foredeep sub-basin of the Dinaric Foreland Basin(northern Neotethyan margin,present-day Croatia)during the Middle to Late Eocene.Syn-sedimentary tectonic movements,paleogeographic position and exchanges of short-lived hyperthermal episodes affected the sedimentation and related mineral and geochemical record of these deposits.Mineral(clay)assemblages bear signature of prevailing physical weathering with significant illite and chlorite content,but climatic seasonality is suggested by smectite-interlayered phases and sporadical increase of kaolinite content.Illite crystallinity varies significantly,and the lowest crystallinity is recorded by the Lutetian samples.Illite chemistry index is always bellow 0.5,being characteristic for Fe-Mg-rich illite.The geochemical records are the most prominent(CIA up to 76,CIW up to 91)for the Istrian Lutetian(42.3-40.5 Ma),but also for Priabonian(35.8-34.3 Ma)samples of Hvar Island.The ICV values(the lowest 1.40 and the highest 10.85)of all studied samples fall above PAAS(ICV=0.85)and point to their chemical immaturity.The Ga/Rb ratios are lower than 0.2 and K_(2)O/Al_(2)O_(3) ratios are also low(0.16-0.22),implying transition between cold and dry,and warm and humid climate,obviously trending among several warming episodes.
基金supported by the CNPC Innovation Found(No.2023DQ02-0103)National Major Science and Technology Projects of China(No.2016ZX05003-001).
文摘Strong tectonic activities and diagenetic evolution encourage the development of natural fractures as typical features in deep tight sandstone reservoirs of foreland thrust belts.This study focused on the Jurassic in the southern Junggar Basin to comprehensively analyze the fracture characteristics and differential distribution and,ultimately,addressed the controlling mechanisms of tectonism and diagenesis on fracture effectiveness.Results revealed that the intensity of tectonic activities determines the complexity of tectonic fracture systems to create various fracture orientations when they have been stronger.The intense tectonic deformation would impact the stratum occurrence,which results in a wide range of fracture dip angles.Moreover,as the intensity of tectonic activities and deformations weakens,the scale and degree of tectonic fractures would decrease continuously.The control of tectonism on fracture effectiveness is reflected in the notable variations in the filling of multiple group fractures developed during different tectonic activity periods.Fractures formed in the early stages are more likely to be filled with minerals,causing their effectiveness to deteriorate significantly.Additionally,the strong cementation in the diagenetic evolution can cause more fractures to be filled with minerals and become barriers to fluid flow,which is detrimental to fracture effectiveness.However,dissolution is beneficial in improving their effectiveness by increasing fracture aperture and their connectivity to the pores.These insights can refine the development pattern of natural fractures and contribute to revealing the evolutionary mechanisms of fracture effectiveness in deep tight sandstone reservoirs of foreland thrust belts.
基金supported by the China National Petroleum Corporation Science and Technology Project(Study on genesis mechanism and distribution law of high quality reservoir of the fourth Member of Xujiahe Formation in middle and west Sichuan area,20230301-23)。
文摘The Triassic Xujiahe Formation in the slope zone of the Sichuan foreland basin is a new field of continental tight gas exploration in recent years.The fourth member of the Xujiahe Formation(Xu4 Member),the major interval in the Jianyang Block of the Tianfu gas field in the basin,is characterized by considerable buried depth,tight reservoirs,and strong heterogeneity.By using cast thin section,X-ray diffraction(XRD),scanning electron microscopy(SEM),fluid inclusion thermometry,and core analysis,the reservoir rock types,dominant diageneses,diagenetic history,and controls on high-graded reservoirs were investigated.It is found that the Xu4 Member in Jianyang mainly consists of lithic feldspar sandstones and feldspar lithic sandstones,followed by lithic quartz sandstones.High-energy hydrodynamic conditions in the microfacies of underwater distributary channels and mouth bars are beneficial to the preservation of primary pores and the occurrence of secondary pores,and there are no significant differences in petrophysical properties between these two microfacies.Compaction and calcareous cementation are the dominant controls on reservoir porosity decrease in the Xujiahe Formation;corrosion is the major contributor to porosity increase by generating secondary dissolved pores,e.g.intragranular dissolved pores and intergranular dissolved pores,as major reservoir space in the study area.Fracture zones around the faults inside the Xujiahe Formation(fourth‒order faults)are favorable for proximal tight gas accumulation,preservation,and production.The research findings have been successfully applied to explore the Xujiahe Formation in the slope zone of the Sichuan foreland basin.They can be referential for other similar tight sandstone gas accumulations.
基金supported by Stanford University and by NSF-EAR-1627930CAS participation by CAS(XDB0710000)NSFC(92355301,42074067)。
文摘We seek to understand lithospheric rheology by mapping continental earthquake depths relative to Moho depth,across the entire India/Asia convergent orogen,and eventually worldwide.Such mapping has particular value in geothermometry,and potentially in identifying regions of delamination.How:We are extending our Sn/Lg method beyond amplitude ratios of regional seismic phases measured on arrays(array Sn/Lg method,Wang and Klemperer,2021)to include frequency proxies for earthquake depth relative to Moho(Wang&Klemperer,2024a,b;Harris et al.,2024).
基金the University of Isfahan for the financial support。
文摘A sedimentological investigation was carried out to reconstruct the paleogeography of the Zagros Foreland Basin.Based on the study of more than 1000 rock samples,nine carbonate microfacies and three terrigenous facies were identified.The study reveals that the Maastrichtian succession was deposited in a widespread homoclinal ramp in the High Zagros Basin.Three(Gandom Kar area),two(Ardal area),seven(Gardbishe area),five(Shirmard area),two(Kuh-e-Kamaneh area),three(Kuh-e-Balghar area),and six(Murak area)of depositional sequences(3rd order)were identified.The thickness of the lowstand systems tract(LST)due to activities of local faults and subsidence in the southeast is more than in the central and northwest of the High Zagros Basin during the Early and Early Middle Maastrichtian.During the Middle Maastrichtian,the shallow and deep marine deposits were formed during the transgressive systems tract(TST)and highstand systems tract(HST)in this basin and the rate of subsidence in the center of this basin(Gardbishe area)is higher than in other areas and the platform was drowned in this area.The falling relative sea-level due to activities of local faults led to that marine deposits were absent in all parts of the High Zagros Basin(except the south part)during the Late Maastrichtian.Paleogeographical studies on the Zagros Basin during the Late Campanian-Maastrichtian showed the following results:shallow marine environments were developed in the southeast of this basin,and the turbidite,delta,and fluvial environments in the northwest were developed more than in other areas.
基金Supported by the CNPC Major Science and Technology Project(2023ZZ14YJ02)Petro China Science and Technology Major Project(2022KT0201)。
文摘This study integrates field outcrop profiles,drilling cores,2D seismic profiles,and 3D seismic data of key areas to analyze the Triassic tectonic-sequence stratigraphy in the Kuqa foreland basin,and investigates the impact of episodic thrust structures on sedimentary evolution and source rock distribution.(1)The Kuqa foreland basin has experienced stages of initial strong,weakened activities,relaxation and inactivity of episodic thrusting,resulting in the identification of 4 second-order sequences(Ehebulake Formation,Karamay Formation,Huangshanjie Formation,Taliqike Formation)and 11 third-order sequences(SQ1-SQ11)in the Triassic strata.Each sequence or secondary sequence displays a“coarse at the bottom and fine at the top”pattern due to the influence of secondary episodic thrust activity.(2)The episodic thrusting is closely linked to regional sequence patterns,deposition and source rock formation and distribution.The sedimentary evolution in the Triassic progresses from fan delta to braided river delta,lake,braided river delta,and meandering river delta,corresponding to the initial strong to the inactivity stages of episodic thrusting.The development stage of thick,coarse-grained sandy conglomerate reservoirs aligns with the strong to weakened thrust activities,while the source rock formation period coincides with the relaxation to inactivity stages.(3)Controlled by the intensity and stages of episodic thrust activity,the nearly EW trending thrust fault significantly thickened the footwall source rock during the Huangshanjie Formation,becoming the development center of Triassic source rock,and experienced multiple overthrust nappes in the soft stratum of the source rock,showing“stacked style”distribution.(4)The deep layers of the Kuqa foreland basin have the foundation and conditions necessary for the formation of substantial gas reservoirs,capable of forming various types of reservoirs such as self-generating and self-storing lithology,lower generating and upper storing fault block-lithology,and stratigraphic unconformity.This area holds significant importance for future gas exploration efforts aimed at enhancing reserves and production capabilities.
文摘The distribution of Eocene-Oligocene turbidite facies in the Pindos foreland and the paleocurrent directions of submarine fan deposits,of the Peloponnesus area,document the proximal part of an underfilled foreland basin.The definition of Pindos foreland basin attributes sediment accommodation solely to flexural subsidence driven by topographic load of the thrust belt and sediment loads in the foreland basin.The restriction of the coarse grained deposits and the basin underfilled conditions are related to the Pindos foreland evolution,and especially to the internal thrusting and produced intrabasinal highs.The presence of strike-slip faults can affect the geometry of a basin by causing changes in depth and width,resulting in the transformation from a uniform to non-uniform configuration.This change has an intensive impact on depositional environments along the basin axis.Strike-slip faults that cross-cut intrabasinal highs produce pathways for the sediment distribution on both sides of the highs.Distributary channels that discharge into the basin are perpendicular to its axis and shift axially at the basin floor.The strikeslip and thrust faulting operated contemporaneously for much of their active periods,although it appears that thrust faulting,initiated slightly earlier than strike-slip faulting.
基金funded by CNSF(No.41173055)the Research Program of China Geological Survey(No. 1212011121117)
文摘Field investigation combined with detailed petrographic observation indicate that abundant oil,gas,and solid bitumen inclusions were entrapped in veins and cements of sedimentary rocks in the Dabashan foreland,which were used to reconstruct the oil and gas migration history in the context of tectonic evolution.Three stages of veins were recognized and related to the collision between the North China block and the Yangtze block during the Indosinian orogeny from Late Triassic to Early Jurassic(Dl),the southwest thrusting of the Qinling orogenic belt towards the Sichuan basin during the Yanshanian orogeny from Late Jurassic to Early Cretaceous(D2),and extensional tectonics during Late Cretaceous to Paleogene(D3),respectively.The occurrences of hydrocarbon inclusions in these veins and their homogenization temperatures suggest that oil was generated in the early stage of tectonic evolution,and gas was generated later,whereas solid bitumen was the result of pyrolysis of previously accumulated hydrocarbons.Three stages of hydrocarbon fluid inclusions were also identified in cements of carbonates and sandstones of gas beds in the Dabashan foreland belt and the Dabashan foreland depression(northeastern Sichuan basin),which recorded oil/gas formation,migration,accumulation and destruction of paleo-reservoirs during the D2.Isotopic analysis of hydrocarbon fluid inclusions contained in vein minerals shows that δ^(13)C_1 of gas in fluid inclusions ranges from-17.0‰ to-30.4‰(PDB) and δD from-107.7‰ to-156.7‰(SMOW),which indicates that the gas captured in the veins was migrated natural gas which may be correlated with gas from the gas-fields in northern Sichuan basin.Organic geochemical comparison between bitumen and potential source rocks indicates that the Lower Cambrian black shale and the Lower Permian black limestone were the most possible source rocks of the bitumen.Combined with tectonic evolution history of the Dabashan foreland,the results of this study suggest that oil was generated from the Paleozoic source rocks in the Dabashan area under normal burial thermal conditions before Indosinian tectonics and accumulated to form paleo-reservoirs during Indosinian collision between the North China block and the Yangtz block.The paleo-reservoirs were destroyed during the Yanshanian tectonic movement when the Dabashan foreland was formed.At the same time,oil in the paleo-reservoirs in the Dabashan foreland depression was pyrolyzed to transform to dry gas and the residues became solid bitumen.
文摘Himalaya and its foreland acted as a coupled system that responded to the climate variability and evolved as a thrust and fold belt.The river systems draining the Himalaya,the Ganga foreland act as an artery that helps registering climate and tectonic signals into its geomorphology and sedimentary history.The paper discusses the late Quaternary landscape evolution of the mountain and its foreland and reviews the published literature in the context.
基金the National Natural Science Foundation of china (poject No. 49070140)
文摘Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.
基金supported by National Natural Foundation of China(No.41172184)SINOPROBE-08-01SNOPEC(China)
文摘The Dabashan orocline is situated in the northwestern margin of the central Yangtze block,central China.Previous studies have defined the orthogonal superposed folds growing in its central-western segment thereby confirming its two-stage tectonic evolution history.Geological mapping has revealed that more types of superposed folds have developed in the eastern segment of the orocline,which probably provides more clues for probing the structure and tectonic history of the Dabashan orocline.In this paper,based on geological mapping,structural measurements and analyses of deformation,we have identified three groups of folds with different trends (e.g.NW-,NE-and nearly E-trending folds) and three types of structural patterns of superposed folds in the eastern Dabashan foreland (e.g.syn-axial,oblique,and conjunctional superposed folds).In combination with geochronological data,we propose that the synaxial superposed folds are due to two stages of ~N-S shortening in the west and north of the Shennongjia massif,and that oblique superposed folds have been resulted from the superposition of the NW-and NE-trending folds onto the early ~ E-W folds in the east of the Shennongjia massif in the late Jurassic to early Cretaceous.The conjunctional folds are composed of the NW-and NE-trending folds,corresponding to the regional-scale dual-orocline in the eastern Sichuan as a result of the southwestward expansion of the Dabashan foreland during late Jurassic to early Cretaceous,coeval with the northwestward propagation of the Xuefengshan foreland.Integration of the structure and geochronology of the belt shows that the Dabashan orocline is a combined deformation belt primarily experiencing a twostage tectonic evolution history in Mesozoic,initiation of the Dabashan orocline as a foreland basin along the front of the Qinling orogen in late Triassic to early Jurassic due to collisional orogeny,and the final formation of the Dabashan orocline owing to the southwestward propagation of the Qinling orogen during late Jurassic to early Cretaceous intra-continental orogeny.Our studies provide some evidences for understanding the structure and deformation of the Dabashan orocline.
基金TheresearchissponsoredbytheNationalNaturalScienceFoundationofChina (No .4 9972 0 78)
文摘The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.
基金supported by the Foundation Project of State Key Laboratory of Petroleum Resources and Prospecting (PRPDX2008-05)the "973" National Key Basic Research Program (2006CB202308)
文摘Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon accumulation in the western foreland basins. We determined the time of neotectonic movement in the Kuqa Foreland Basin, which began from the Neogene, and analyzed the patterns of movement, which were continuous and fast subsidence in the vertical direction and intense lateral compression. The structure styles are that the faulting is weakened and the folding is strengthened gradually from north to south. We studied the control of neotectonic movement on the hydrocarbon accumulation process and model in the Kuqa Foreland Basin with basin simulation technique. The largest subsidence rate of the Kuqa Foreland Basin reached 1,200 m/Ma during the neotectonic movement, leading to rapid maturing of source rock within 5 Ma and a large quantity of hydrocarbon being generated and expelled. The thick neotectonic strata can form high quality reservoirs with the proved gas and oil reserves accounting for 5% and 27% of the total reserves, respectively. 86% of the structural traps were formed in the neotectonic movement period. The faults formed during the neotectonic movement serve as important migration pathways and they exist in the region where the hydrocarbon reservoirs are distributed. Abnormally high pressure caused by the intense lateral compression, thick neotectonic strata deposition and rapid hydrocarbon generation provide driving force for hydrocarbon migration. The accumulation elements match each other well over a short period, leading to many large gas fields formed later in the Kuqa Foreland Basin.
基金This work was supported by the National Key Research and Development Project(No.2019YFC0605501)the National Science and Technology Major Project(2016ZX05003001).
文摘The buried depth of the gas-producing reservoir in the Kuqa foreland thrust belt of the Tarim Basin exceeds 6000 m.The average matrix porosity of the reservoir is 5.5%,and the average matrix permeability is 0.128×10^(−3)μm^(2).In order to reveal the characteristics and efectiveness of ultra-deep fractures and their efects on reservoir properties and natural gas production,outcrops,cores,thin section,image logs and production testing data are used to investigate the efectiveness of tectonic fractures in ultra-deep reservoirs in the Kuqa foreland thrust zone,and the corresponding geological signifcance for oil and gas exploration and development are discussed.Tectonic fractures in the thrust belt include EW-trending high-angle tensile fractures and NS-trending vertical shear fractures.The former has a relatively high flling rate,while the latter is mostly unflled.Micro-fractures are usually grain-piercing-through cracks with width of 10-100 microns.In the planar view,the efective fractures are concentrated in the high part and wing zones of the long axis of the anticline,and along the vertical direction,they are mainly found in the tensile fracture zone above the neutral plane.The adjustment fracture zone has the strongest vertical extension abilities and high efectiveness,followed by the nearly EW longitudinal tensile fracture zone,and the netted fracture zone with multiple dip angles.The efectiveness of fracture is mainly controlled by fracture aperture and flling degrees.Efective fractures can increase reservoir permeability by 1-2 orders of magnitude.The higher part of the anticline is associated with high tectonic fracture permeability,which control enrichment and high production of natural gas.The netted vertical open fractures efectively communicate with pores and throats of the reservoir matrix,which forms an apparent-homogenous to medium-heterogeneous body that is seen with high production of natural gas sustained for a long term.
基金funded by CNSF (No.41173055)and marine department,Sinopec
文摘Natural bitumen is the evolutionary residue of hydrocarbon of sedimentary organic matter. Several kinds of bitumen with different occurrences, including bitumen in source rock, migration bitumen filled in fault, oil-bed bitumen and paleo-reservoir bitumen, are distributed widely in the Dabashan foreland. These kinds of bitumen represent the process of oil/gas formation, migration and accumulation in the region. Bitumen in source rock fiUed in fractures and stylolite and experienced deformation simultaneously together with source rock themselves. It indicated that oil/gas generation and expelling from source rock occurred under normal buried thermal conditions during prototype basin evolution stages prior to orogeny. Occurrences of bitumen in source rock indicated that paleo- reservoir formation conditions existed in the Dabashan foreland. Migration bitumen being widespread in the fault revealed that the fault was the main channel for oil/gas migration, which occurred synchronously with Jurassic foreland deformation. Oil-bed bitumen was the kind of pyrolysis bitumen that distributed in solution pores of reservoir rock in the Dabashan foreland depression, the northeastern Sichuan Basin. Geochemistry of oil-bed bitumen indicated that natural gas that accumulated in the Dabashan foreland depression formed from liquid hydrocarbon by pyrolysis process. However, paleo-reservior bitumen in the Dabashan forleland was the kind of degradation bitumen that formed from liquid hydrocarbon within the paleo-reservior by oxidation, alteration and other secondary changes due to paleo-reservior damage during tectonics in the Dabashan foreland. In combination with the tectonic evolution of the Dabashan foreland, it is proposed that the oil/gas generated, migrated and accumulated to form the paleo-reservoir during the Triassic Indosinian tectonic movement. Jurassic collision orogeny, the Yanshan tectonic movement, led to intracontinental orogeny of the Dabashan area accompanied by geofluid expelling and paleo-reservoir damage in the Dabashan foreland. The present work proposed that there is liquid hydrocarbon exploration potential in the Dabashan foreland, while there are prospects for the existence of natural gas in the Dabashan foreland depression.
基金This research received financial supports from the National Natural Science Foundation of China(grant 40172076)the National Major Fundamental Research and Development Project(grant G1999043305)the National Key Project of the Ninth Five—Year Plan(grant 99—1111)
文摘The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.
基金presents part of the achievements of project "Research on tectonic evolution and hydrocarbon prospect of the Dabashan foreland belt",financially supported by China Petroleum and Chemical Corporation
文摘There are two plays in the Dabashan foreland tectonic belt: the upper and the lower plays. The lower play experienced one sedimentary hydrodynamic stage, two burial hydrodynamic stages, two tectonic hydrodynamic stages and two infiltration hydrodynamic stages from the Sinian to the Cenozoic, while the upper play had one sedimentary hydrodynamic stage, one burial hydrodynamic stage, two tectonic hydrodynamic stages and one infiltration hydrodynamic stage from the Permian to the Cenozoic. Extensive flows of both sedimentary water, including hydrocarbons, and deep mantle fluid occurred in the Chengkou faults during collision orogeny in the Middle-Late Triassic Indosinian orogeny, and fluid flow was complicated during intracontinental orogeny in the Middle-Late Jurassic. In addition to these movements, infiltration and movement of meteoric water took place in the Chengkou faults, whereas in the covering-strata decollement tectonic belt, extensive sedimentary water flow (including hydrocarbons) occurred mainly in the Zhenba and Pingba faults. During the stage of rapid uplift and exhumation from the Cretaceous to the Cenozoic, the fluid flow was characterized mainly by infiltration of meteoric water and gravity-induced flow caused by altitude difference, whereas sedimentary water flow caused by tectonic processes was relatively less significant. Sedimentary water flow was more significant to the lower play in hydrocarbon migration and accumulation during collision orogeny in the Middle-Late Triassic Indosinian orogeny, but its influence is relatively slight on the upper play. On one hand, hydrodynamics during intracontinental orogeny in the Middle-Late Jurassic adjusted, reformed or oven destroyed oil reservoirs in the lower play; on the other hand, it drove large amounts of hydrocarbons to migrate laterally and vertically and is favorable for hydrocarbon accumulation. Infiltration hydrodynamics mainly adjusted and destroyed oil reservoirs from the Cretaceous to the Cenozoic.
基金sponsored by the 10th Five-year Major Development Program of China(2001BA616A, 2004BA616A) from 2001 to 2005,the 10th and 11th Five-year main program of Petrochina(06-01A-02-01,2008B- 0202) and the State Key Laboratory of EOR
文摘Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable exploration areas, the foreland basins in central and western China can be divided into three structural types: superimposed, retrogressive and reformative foreland basin (or thrust belt), each with distinctive petroleum system characteristics in their petroleum system components (such as the source rock, reservoir rock, caprock, time of oil and gas accumulation, the remolding of oil/gas reservoir after accumulation, and the favorable exploration area, etc.). The superimposed type foreland basins, as exemplified by the Kuqa Depression of the Tarim Basin, characterized by two stages of early and late foreland basin development, typically contain at least two hydrocarbon source beds, one deposited in the early foreland development and another in the later fault-trough lake stage. Hydrocarbon accumulations in this type of foreland basin often occur in multiple stages of the basin development, though most of the highly productive pools were formed during the late stage of hydrocarbon migration and entrapment (Himalayan period). This is in sharp contrast to the retrogressive foreland basins (only developing foreland basin during the Permian to Triassic) such as the western Sichuan Basin, where prolific hydrocarbon source rocks are associated with sediments deposited during the early stages of the foreland basin development. As a result, hydrocarbon accumulations in retrogressive foreland basins occur mainly in the early stage of basin evolution. The reformative foreland basins (only developing foreland basin during the Himalayan period) such as the northern Qaidam Basin, in contrast, contain organic-rich, lacustrine source rocks deposited only in fault-trough lake basins occurring prior to the reformative foreland development during the late Cenozoic, with hydrocarbon accumulations taking place relatively late (Himalayan period). Therefore, the ultimate hydrocarbon potentials in the three types of foreland basins are largely determined by the extent of spatial and temporal matching among the thrust belts, hydrocarbon source kitchens, and regional and local caprocks.
文摘The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existence of abnormally high pressure and various reservoir-cap combinations developed at different times provide favorable conditions for trapping oil and gas. Taking the theory of petroleum systems as a guide, and beginning with research on tectonics, sedimentary history, distribution and evolution of source rocks, reservoir evolution, hydraulic force distribution, and hydrocarbon migration, analysis and study of static factors like source rocks, reservoirs and cap rocks, and dynamic factors such as hydrocarbon generation, migration, and accumulation revealed the characteristics of the Upper Triassic petroleum system in western Sichuan province. The deepbasin gas in the central hydrocarbon kitchen of the Upper Triassic, structural-lithological combination traps on the surrounding slopes, and the structural traps of the Indo-Chinese-Yangshan paleohighs, are potential plays. The relatively well- developed fault zones in the southern segment of the Longmengshan foothill belt are favorable Jurassic gas plays. Pengshan-Xinjin, Qiongxi, and Dayi are recent exploration targets for Jurassic oil/gas reservoirs.
基金funded by China National Natural Science Foundation(No:41372114,41502116,41340005,40841010,40972083,41172162,and 41402159)geological survey from China Geological Survey(No:121201010000150004–08 and 12120115004501–01)the project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No:SK–0801)
文摘Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.