期刊文献+
共找到3,817篇文章
< 1 2 191 >
每页显示 20 50 100
Numerical investigation in characteristics of multi-layer thrust gas foil bearing based on fluid–structure coupling field
1
作者 Hongwei WANG Yuanwei LYU +3 位作者 Jingyang ZHANG Qijun ZHAO Chengfeng NA Lijun CHEN 《Chinese Journal of Aeronautics》 2025年第8期283-299,共17页
Rotating machinery in the aviation industry is increasingly embracing high speeds and miniaturization,and foil dynamic pressure gas bearing has great application value due to its self-lubrication and self-adaptive def... Rotating machinery in the aviation industry is increasingly embracing high speeds and miniaturization,and foil dynamic pressure gas bearing has great application value due to its self-lubrication and self-adaptive deformation characteristics.This study explores the interaction mechanism between micro-scale variable-sectional shearing flow with hyper-rotation speeds and a three-layer elastic foil assembly through bidirectional aero-elastic coupling in a Multi-layer Thrust Gas Foil Bearing(MTGFB).The bearing capacity of the MTGFB varies non-linearly with the decrease of gas film clearance,while the collaborative deformation of the three-layer elastic foil assembly can deal with different load conditions.As the load capacity increases,the enhanced dynamic pressure effect causes the top foil to evolve from a single arch to multiple arches.The hydrodynamic effects in the gas film evolve to form multiple segmented wedges with different pitch ratios,while the peak pressure of the gas film always occurs near the vaults of the top foil.As the rotational speed frequency approaches the natural frequency,the resonance of the gas film and elastic foil assembly system occurs,and a phase delay occurs between the pressure pulsation and the vibration of foils.The load capacity of the MTGFB also depends on the elastic moduli of the elastic foil assembly.Increasing the elastic modulus decreases the deformation amplitude of the top foil,whereas it increases those of the backboard and middle foil,increasing the load capacity. 展开更多
关键词 Adaptive deformation Bearing capacity Elastic modulus Multi-foil superposition Thrust gas foil bearing Two-way fluid-structure coupling
原文传递
Corrosion and Copper Foil Formation Behavior of Laser-Welded Joint and Spin-Formed Materials of Commercially Pure Titanium in H_(2)SO_(4)/CuSO_(4) Electrolyte 被引量:1
2
作者 Ren Lina Song Yanfei +4 位作者 Qi Liang Yang Jian Yang Jiadian Lei Xiaowei Zhang Jianxun 《稀有金属材料与工程》 北大核心 2025年第6期1467-1477,共11页
Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosio... Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties. 展开更多
关键词 Ti cathode laser beam welding spin forming CORROSION Cu foil electroplating
原文传递
Advances in electrolytic copper foils:fabrication,microstructure,and mechanical properties 被引量:1
3
作者 Long-Long Lu Hai-Tao Liu +8 位作者 Zhao-Dong Wang Qiong-Qiong Lu Yan-Jun Zhou Fei Zhou Yan-Min Zhang Wei-Wei Lu Bin Yang Qian-Qian Zhu Ke-Xing Song 《Rare Metals》 2025年第2期757-792,共36页
Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of L... Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented. 展开更多
关键词 Electrolytic copper foil Fabrication processes ELECTRODEPOSITION MICROSTRUCTURE Mechanical properties
原文传递
Effect of rolling schedules on ridging resistance of ultra-thin ferritic stainless steel foil
4
作者 Jing-wei Zhao Qing-zhong Xie +4 位作者 Li-nan Ma Cun-long Zhou Zheng-yi Jiang Xi Liao Xiao-guang Ma 《Journal of Iron and Steel Research International》 2025年第1期198-214,共17页
The effect of rolling schedules on the ridging resistance of ultra-thin ferritic stainless steel(FSS)430 foil was evaluated by studying the microstructure and texture.The results show that specimens processed with thr... The effect of rolling schedules on the ridging resistance of ultra-thin ferritic stainless steel(FSS)430 foil was evaluated by studying the microstructure and texture.The results show that specimens processed with three-pass cold rolling under the reductions of 40%,40%and 31%,respectively,exhibit improved ridging resistance owing to the microstructural refinement and the texture structure optimization.A nearly 40%reduction of ridging height can be achieved using the proposed rolling schedule compared to the other two rolling schedules.In addition,the effect of annealing temperature after cold rolling on the ridging resistance of FSS 430 foil is also found to be crucial,and an optimal annealing temperature of 900℃ is obtained for FSS 430 foil with high ridging resistance.Overall,the improvement in the ridging resistance of FSS 430 foil can be attributed to the reduction in the fraction of{001}<110>and{114}<110>components by optimization of the rolling and annealing processes. 展开更多
关键词 Ferritic stainless steel foil RIDGING Cold rolling ANNEALING Microstructure TEXTURE
原文传递
Experimental determination of stripping foil thickness on the XiPAF synchrotron
5
作者 Xiao-Yu Liu Hong-Juan Yao +4 位作者 Shu-Xin Zheng Ze-Jiang Wang Yang Xiong Pei-Zhi Fang Zhong-Ming Wang 《Nuclear Science and Techniques》 2025年第3期27-37,共11页
Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is cru... Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is crucial in the study of stripping injection,particularly in low-energy stripping injection synchrotrons,such as the XiPAF synchrotron.The foil thickness is the main parameter that affects the properties of the beam after injection.The thin stripping foil is reinforced with collodion during its installation.However,the collodion on the foil surface makes it difficult to determine its equivalent thickness,because the mechanical measurements are not sufficiently reliable or convenient for continuously determining foil thickness.We propose an online stripping foil thickness measurement method based on the ionization energy loss effect,which is suitable for any foil thickness and does not require additional equipment.Experimental studies were conducted using the XiPAF synchrotron.The limitation of this method was examined,and the results were verified by comparing the experimentally obtained beam current accumulation curves with the simulation results.This confirms the accuracy and reliability of the proposed method for measuring the stripping foil thickness. 展开更多
关键词 Stripping injection foil thickness SYNCHROTRON Injection efficiency Experimental study
在线阅读 下载PDF
Tailoring microstructure and performance of WE43MEO magnesium alloy via multi-pass hot rolling and finishing heat treatment towards foils for biomedical support structures
6
作者 Franziska Ueberschär Simon Schmidt +4 位作者 Kristina Kittner Simon Pöstges Madlen Ullmann Alexander Kopp Ulrich Prahl 《Journal of Magnesium and Alloys》 2025年第10期4966-4984,共19页
WE43MEO magnesium foils(thickness≤200μm)were successfully produced via hot rolling.The initially extruded material was heat treated at 450℃for 2 h to achieve a more homogenous microstructure.Afterwards the sheets w... WE43MEO magnesium foils(thickness≤200μm)were successfully produced via hot rolling.The initially extruded material was heat treated at 450℃for 2 h to achieve a more homogenous microstructure.Afterwards the sheets were hot rolled at 480℃in two to five rolling passes to achieve a uniform thickness of less than 200μm and finally heat treated(T5 and T6 heat treatment).After foil rolling and final heat treatment the microstructural und texture evolution as well as resulting mechanical properties were investigated.Therefore,the samples were quenched directly after foil rolling and the final heat treatment.The foil rolling led either to a deformation microstructure(two and three passes)or globular grains(four and five passes)depending on the number of rolling passes.As main recrystallisation mechanisms continuous dynamic recrystallisation(CDRX)and twinning induced dynamic recrystallisation(TDRX)were identified.The resulting textures revealed the activation of non-basal slip of<c+a>-dislocations during prior foil rolling.As a result of the rolling,the strength increased and the elongation decreased compared to the extruded and heat-treated state.Furthermore,it was found that a T6 temper increased corrosion resistance of the tested WE43MEO foils. 展开更多
关键词 WE43MEO BIOABSORBABLE Heat treatment foil rolling Degradation MICROSTRUCTURE
在线阅读 下载PDF
Developing novel ultra-thin refractory medium-entropy foils with excellent strength-ductility synergy
7
作者 Sheng-Li Guo Wei Zhang +6 位作者 Xue-Hui Yan Guang-Zong Wang Ke-Hang He Bao-Hong Zhu Hao-Chen Qiu Shuai-Shuai Wu Wei Jiang 《Rare Metals》 2025年第2期1380-1391,共12页
The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al a... The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al addition,having a superplastic extensibility of~5000%under cold rolling,enables directly fabricated ultrathin foils with a thickness down to~0.2 mm without any treatments.Particularly,the annealed NbZrTiAl_(4) MEA foils,containing a coherent nanoscale B2,exhibit an ultrahigh yield strength of up to~1130 MPa,which even surpasses the bulk counterpart,while maintaining a good fracture elongation of up to~14%.The Al addition induced a stronger solid solution strengthening and fine-grain strengthening in the foils.Complex dislocation interactions and dislocation–B2 interactions promoted a dynamical formation of dislocation bands,which yielded work-hardening ability and tensile ductility.These findings provide a novel strategy for the design of ultrathin refractory medium-entropy foils to break through their performance limits at ultrahigh temperatures and guide the design of high-performance lightweight foils for structural applications. 展开更多
关键词 Medium-entropy alloys Ultra-thin foils Mechanical properties NANOPRECIPITATION
原文传递
Constructing ultra-thin magnesium foil by electrolysis as a stable and high-utilization negative electrode for rechargeable magnesium battery
8
作者 Can Liu Peiyuan Jiao +6 位作者 Zhipeng Gao Tiantian Wen Guangsheng Huang Jili Yue Fangyu Xiong Jingfeng Wang Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第11期5473-5482,共10页
Rechargeable magnesium batteries(RMBs)have attracted much attention due to the high theoretical capacity(3833 mAh cm−3)of magnesium metal negative electrode and abundant resources.However,the preparation of ultra-thin... Rechargeable magnesium batteries(RMBs)have attracted much attention due to the high theoretical capacity(3833 mAh cm−3)of magnesium metal negative electrode and abundant resources.However,the preparation of ultra-thin magnesium foils faces the problems of rolling difficulty and high processing cost,while the use of thick magnesium foils leads to low utilization of magnesium and reduces the energy density.To tackle the above problems,we successfully prepared ultra-thin magnesium foils based on electrolytic process and investigated the effect of different substrates.The magnesium foils prepared using Mo substrate have more uniform surface morphology and lower surface roughness,which is attributed to the lower magnesium nucleation overpotential of Mo substrate.Meanwhile,density functional theory calculations show that the adsorption energy of Mo on Mg is more negative,which is conducive to achieving uniform nucleation and deposition of Mg.The Mg deposition on Mo substrate undergoes the characteristic stages of transient nucleation,nucleus accretion,multidirectional heterotopic growth,and columnar crystal stacking,and ultimately the formation of a dense deposited layer.In addition,the prepared ultra-thin Mg foil with Mo substrate can stably cycle for 1000 h at 3 mA cm^(-2) with high utilization of 50% in the symmetric cell.This study develops a facile method for the preparation of ultra-thin Mg foils,which opens up a new path for developing high-performance ultra-thin negative electrodes for RMBs. 展开更多
关键词 Rechargeable magnesium battery Magnesium metal negative electrode ELECTROLYSIS Ultra-thin magnesium foil Growth mechanism
在线阅读 下载PDF
Edge cracking behavior of copper foil in asymmetrical micro-rolling
9
作者 Jing-qi CHEN Lin-yun ZHENG +7 位作者 Wei ZHAO Zhen-hua BAI Xue-tong LI Ri-huan LU Shou-dong CHEN Xiang-hua LIU Hai-tao GAO Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 2025年第5期1634-1647,共14页
The edge crack behavior of copper foil in asymmetrical micro-rolling was studied.The effects of the speed ratio between rolls,grain size and stress state in the deformation zone on edge cracks of the rolled piece in a... The edge crack behavior of copper foil in asymmetrical micro-rolling was studied.The effects of the speed ratio between rolls,grain size and stress state in the deformation zone on edge cracks of the rolled piece in asymmetrical rolling were analyzed.Low plasticity,uneven deformation and longitudinal secondary tensile stress generated in the edge area of the rolled piece during the rolling process are the main causes of edge cracks.The larger the grain size of the rolled piece,the smaller the number of edge cracks and the deeper the expansion depth,and the larger the spacing between cracks under the same rolling reduction.Asymmetrical rolling can effectively increase the rolling reduction at when the copper foil fist shows edge cracks compared to symmetrical rolling.This enhancement is attributed to the shearing stress induced by asymmetrical rolling,which reduces the rolling force and longitudinal secondary tensile stress,and increases the residual compressive stress on the surface of the rolled piece.The edge crack defects of copper foil can be effectively reduced by increasing the speed ratio between the rolls in asymmetrical rolling. 展开更多
关键词 edge crack copper foil asymmetrical rolling size effect
在线阅读 下载PDF
Effect of pulse current and its application direction on the size effect of nanocrystalline nickel foil
10
作者 WANG Yi-yan LI Chao +2 位作者 CHEN Zi-shuai DU Jin-yang LI Feng 《Journal of Central South University》 2025年第7期2416-2431,共16页
In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ra... In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ratios(λ)were prepared using pulsed electrodeposition in this paper and unidirectional tensile experiments were carried out at room temperature with different currents and their applied directions.The experimental results show that the nanocrystalline Ni foil produces an obvious electroplasticity effect after applying the current field,and when 300<λ<1100,the current weakens the size effect of nanocrystalline Ni foils to a certain extent,and the angle between the current direction and the deformation direction also affects the mechanical response of nanocrystalline Ni foils,and when the angle between the current direction and the deformation direction is 0°,electroplasticity effect is the best,and the current has the most significant effect of abating the size effect of the material.The mechanism of unidirectional tensile deformation of nanocrystalline Ni foils under the effect of pulsed current was analyzed using TEM and TKD.It was found that the applied pulse current increased the activity of the nanocrystalline boundaries,promoted the movement of dislocations,and reduced the tendency of dislocation entanglement.The higher the peak current density and the smaller the angle between the direction of the current and the direction of deformation,the smaller the grain boundary orientation difference,the more dispersed the grain orientation,and the lower the density of geometrically necessary dislocations(GND)in the deformed nanocrystalline foil,the more significant the effect on material plasticity improvement. 展开更多
关键词 nanocrystalline Ni foil size effect electroplasticity effect current direction
在线阅读 下载PDF
Microstructure and mechanical behavior of Mg/Al composite plates with different thicknesses of Ti foil interlayer
11
作者 Jian Li Bo Feng +4 位作者 Xiaowei Feng Xianhua Chen Kaihong Zheng Xianquan Jiang Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第7期3237-3251,共15页
In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The... In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The results show that compared to 100μm thick Ti foil,10μm thick Ti foil is more prone to fracture and is evenly distributed in fragments at the interface.The introduction of Ti foil can effectively refine the grain size of Mg layers of as-rolled Mg/Al composite plates,10μm thick Ti foil has a better refining effect than 100μm thick Ti foil.Ti foil can effectively increase the yield strength(YS)and ultimate strength(UTS)of as-rolled Mg/Al composite plates,10μm thick Ti foil significantly improves the elongation(El)of Mg/Al composite plate,while 100μm thick Ti foil slightly weakens the El.After annealing at 420℃ for 0.5 h and 4 h,Ti foil can inhibit the formation of intermetallic compounds(IMCs)at the interface of Mg/Al composite plates,which effectively improves the YS,UTS and El of Mg/Al composite plates.In addition,Ti foil can also significantly enhance the interfacial shear strength(SS)of Mg/Al composite plates before and after annealing. 展开更多
关键词 Mg/Al composite plate Ti foil INTERFACE Mechanical behavior MICROSTRUCTURE
在线阅读 下载PDF
Non-destructive analysis of lithium dynamics in metal foil anodes for anode-free batteries:Insights from distribution of relaxation times
12
作者 Qingyu Xie Lei Ma +9 位作者 Jiaxuan Liao Yi Wang Lichun Zhou Xiongbang Wei Ying Lin Zhi Chen Wenlong Liu Linnan Bi Qiang Zou Sizhe Wang 《Journal of Energy Chemistry》 2025年第9期703-712,I0019,共11页
Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current c... Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current collectors in anode-free batteries was addressed by using the non-destructive distribution of relaxation times(DRT)analysis to systematically investigate the lithium transport behavior of 14 metal foils and its correlation with electrochemical performance.By integrating energy-dispersive spectro scopy(EDS),cyclic voltammetry(CV),and galvanostatic testing,the exceptional properties of indium(In),tin(Sn),and silver(Ag)were revealed:the Li-In alloying reaction exhibits high reversibility,Li-Sn alloys demonstrate outstanding cycling stability,and the Li-Ag solid-solution mechanism provides an ideal lithium deposition interface on the silver substrate.The DRT separates the polarization internal resistance of lithium ions passing through the SEI layer(R_(sei),τ2)and the polarization internal resistance of lithium ions undergoing charge transfer reaction at the electrolyte/electrode interface(R_(ct),τ3)by decoupling the electrochemical impedance spectroscopy(EIS).For the first time,the correlation betweenτ2,τ3,and the cycle life/Coulombic efficiency of alloy/solid-solution metals was established,while non-alloy metals are not suitable for this method due to differences in lithium deposition mechanisms.This study not only illuminates the structure-property relationship governing the lithium kinetics of metal foil electrodes but also provides a novel non-destructive analytical strategy and theoretical guidance for the rational design of stable anodes in high-energy-density batteries,facilitating the efficient screening and optimization of anode-free battery. 展开更多
关键词 Metal foil anodes Anode-free batteries Distribution of relaxation times Non-destructive analysis Lithium kinetics process
在线阅读 下载PDF
Effect of pretreatment on electrochemical etching behavior of Al foil in HCl-H_2SO_4 被引量:6
13
作者 班朝磊 何业东 +1 位作者 邵鑫 杜鹃 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1039-1045,共7页
The aluminum foil for high voltage aluminum electrolytic capacitor was immersed in 0.5 mol/L H3PO4 or 0.125 mol/L NaOH solution at 40 ℃ for different time and then DC electro-etched in 1 mol/L HC1+2.5 mol/L H2SO4 el... The aluminum foil for high voltage aluminum electrolytic capacitor was immersed in 0.5 mol/L H3PO4 or 0.125 mol/L NaOH solution at 40 ℃ for different time and then DC electro-etched in 1 mol/L HC1+2.5 mol/L H2SO4 electrolyte at 80 ℃. The pitting potential and self corrosion potential of A1 foil were measured with polarization curves (PC). The potentiostatic current--time curve was recorded and the surface and cross section images of etched A1 foil were observed with SEM. The electrochemical impedance spectroscopy (EIS) of etched A1 foil and potential transient curves (PTC) during initial etching stage were measured. The results show the chemical pretreatments can activate A1 foil surface, facilitate the absorption, diffusion and migration of C1- onto the A1 foil during etching, and improve the initiation rate of meta-stable pits and density of stable pits and tunnels, leading to much increase in the real surface area and special capacitance of etched A1 foil. 展开更多
关键词 A1 foil POLARIZATION pitting corrosion electrochemical etching AI electrolytic capacitor
在线阅读 下载PDF
Effect of chemical plating Zn on DC-etching behavior of Al foil in HCl-H_2SO_4 被引量:4
14
作者 班朝磊 何业东 +2 位作者 邵鑫 杜鹃 王利平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3650-3657,共8页
The Al foil for high voltage Al electrolytic capacitor usage was immersed in 5.0%NaOH solution containing trace amount of Zn2+and Zn was chemically plated on its surface through an immersion-reduction reaction. Such ... The Al foil for high voltage Al electrolytic capacitor usage was immersed in 5.0%NaOH solution containing trace amount of Zn2+and Zn was chemically plated on its surface through an immersion-reduction reaction. Such Zn-deposited Al foil was quickly transferred into HCl-H 2 SO 4 solution for DC-etching. The effects of Zn impurity on the surface and cross-section etching morphologies and electrochemical behavior of Al foil were investigated by SEM, polarization curve (PC) and electrochemical impedance spectroscopy (EIS). The special capacitance of 100 V formation voltage of etched foil was measured. The results show that the chemical plating Zn on Al substrate in alkali solution can reduce the pitting corrosion resistance, enhance the pitting current density and improve the density and uniform distribution of pits and tunnels due to formation of the micro Zn-Al galvanic local cells. The special capacitance of etched foil grows with the increase of Zn2+concentration. 展开更多
关键词 Al foil POLARIZATION pitting corrosion electrochemical etching Al electrolytic capacitor
在线阅读 下载PDF
Web知识规则提取的FOIL算法改进 被引量:3
15
作者 金莉 卢正鼎 +1 位作者 叶卫国 文坤梅 《小型微型计算机系统》 CSCD 北大核心 2004年第3期419-421,共3页
将一阶学习的 FOIL 算法应用到 Web知识规则的提取是当前学习 Web知识所普遍采用的方法 .本文在 FOIL算法的基础上进行了改进 ,提出了基于网页间联系的新的路径学习算法 。
关键词 一阶学习 foil算法 爬山搜索 WEB 知识规则提取 路径学习算法
在线阅读 下载PDF
Grain statistics effect on deformation behavior in asymmetric rolling of pure copper foil by crystal plasticity finite element model 被引量:6
16
作者 陈守东 刘相华 刘立忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3370-3380,共11页
The grain statistics effect was investigated through asymmetric rolling of pure copper foil by a realistic polycrystalline aggregates model and crystal plasticity element finite model.A polycrystalline aggregate model... The grain statistics effect was investigated through asymmetric rolling of pure copper foil by a realistic polycrystalline aggregates model and crystal plasticity element finite model.A polycrystalline aggregate model was generated and a crystal plasticity-based finite element model was developed for each grain and the specimen as a whole.The crystal plasticity model itself is rate dependent and accounts for local dissipative hardening effects and the original orientation of each grain was generated based on the orientation distribution function(ODF).The deformation behaviors,including inhomogeneous material flow,decrease of contact press and roll force with the increase of grain size for the constant size of specimens,were studied.It is revealed that when the specimens are composed of only a few grains across thickness,the grains with different sizes,shapes and orientations are unevenly distributed in the specimen and each grain plays a significant role in micro-scale plastic deformation and leads to inhomogeneous deformation and the scatter of experimental and simulation results.The slip system activity was examined and the predicted results are consistent with the surface layer model.The slip band is strictly influenced by the misorientation of neighbor grain with consideration of slip system activity.Furthermore,it is found that the decrease of roll force and the most active of slip system in surface grains are caused by the increase of free surface grain effect when the grain size is increased.The results of the physical experiment and simulation provide a basic understanding of micro-scaled plastic deformation behavior in asymmetric foil rolling. 展开更多
关键词 foil rolling grain heterogeneity crystal plasticity finite element deformation behavior
在线阅读 下载PDF
Theoretical analysis of minimum metal foil thickness achievable by asymmetric rolling with fixed identical roll diameters 被引量:4
17
作者 刘鑫 刘相华 +2 位作者 宋孟 孙祥坤 刘立忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期501-507,共7页
A novel approach is proposed for computing the minimum thickness of a metal foil that can be achieved by asymmetric rolling using rolls with identical diameter. This approach is based on simultaneously solving Tseliko... A novel approach is proposed for computing the minimum thickness of a metal foil that can be achieved by asymmetric rolling using rolls with identical diameter. This approach is based on simultaneously solving Tselikov equation for the rolling pressure and the modified Hitchcock equation for the roller flattening. To minimize the effect of the elastic deformation on the equal flow per second during the ultrathin foil rolling process, the law of conservation of mass was employed to compute the proportions of the forward slip, backward slip, and the cross shear zones in the contact arc, and then a formula was derived for computing the minimum thickness for asymmetric rolling. Experiment was conducted to find the foil minimum thickness for 304 steel by asymmetric rolling under the asymmetry ratios of 1.05, 1.15 and 1.30. The experimental results are in good agreement with the calculated ones. It was validated that the proposed formula can be used to calculate the foil minimum thickness under the asymmetric rolling condition. 展开更多
关键词 minimum thickness metal foil law of mass conservation asymmetric rolling
在线阅读 下载PDF
Effect of citric acid on microstructure and electrochemical characteristics of high voltage anodized alumina film formed on etched Al Foils 被引量:6
18
作者 班朝磊 何业东 邵鑫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期133-138,共6页
Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of... Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage. 展开更多
关键词 citric acid anodized oxide film Al foil Al electrolytic capacitor electrochemical performance
在线阅读 下载PDF
基于FOIL算法的一阶规则集学习器设计方法 被引量:1
19
作者 徐彤 张莉 谢波 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2005年第6期80-83,共4页
对FOIL算法进行了深入剖析,提出了一种基于该算法利用V isual Prolog实现一阶规则集学习器的设计方法,给出了实现学习器的关键代码和试验结果,验证了该方法在一阶规则集提取中的有效性。
关键词 foil 一阶规则 序列覆盖 HORN子句 VISUAL PROLOG
在线阅读 下载PDF
Effect of surface treatment for aluminum foils on discharge properties of lithium-ion battery 被引量:5
20
作者 Shigeki NAKANISHI Takashi SUZUKI +2 位作者 Qi CUI Jun AKIKUSA Kenzo NAKAMURA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2314-2319,共6页
Aluminum foils having thicknesses of 10-20 μm are commonly employed as current collectors for cathode electrodes in Li-ion batteries. The effects of the surface morphology of the foil on battery performance were inve... Aluminum foils having thicknesses of 10-20 μm are commonly employed as current collectors for cathode electrodes in Li-ion batteries. The effects of the surface morphology of the foil on battery performance were investigated by using a foil with roughened surface by chemical etching and a plain foil with smooth surface on both sides. For high-conductivity LiCoO2 active materials with large particle size, there are no significant differences in battery performance between the two types of foils. But for low-conductivity LiFePO4 active materials with small particle size, high-rate discharge properties are significantly different. The possibility shows that optimizing both the surface morphology of the aluminum foil and particle size of active material leads to improvement of the battery performance. 展开更多
关键词 lithium-ion battery battery performance surface treatment CONDUCTIVITY plain foil roughened foil
在线阅读 下载PDF
上一页 1 2 191 下一页 到第
使用帮助 返回顶部