期刊文献+
共找到907,853篇文章
< 1 2 250 >
每页显示 20 50 100
基于FOCUS-PDCA模式的持续改进项目对病原学样本送检率的影响
1
作者 章艳菊 周小娣 +3 位作者 张海峰 陈红 焦碧鸯 顾李琴 《海军军医大学学报》 北大核心 2025年第6期824-830,共7页
目的探讨基于FOCUS-PDCA模式的持续改进项目在住院患者抗菌药物治疗前病原学样本送检率的应用效果。方法南通大学附属医院于2023年6-7月采用FOCUS-PDCA模式开展住院患者抗菌药物治疗前病原学样本送检率持续改进项目,选取2023年1-5月(改... 目的探讨基于FOCUS-PDCA模式的持续改进项目在住院患者抗菌药物治疗前病原学样本送检率的应用效果。方法南通大学附属医院于2023年6-7月采用FOCUS-PDCA模式开展住院患者抗菌药物治疗前病原学样本送检率持续改进项目,选取2023年1-5月(改进前)的住院患者为对照组,2023年8-12月(改进后)的住院患者为改进组。比较两组抗菌药物使用率、病原学样本送检率、临床微生物样本送检率和重点监测多重耐药菌检出率等指标。结果改进组治疗性抗菌药物使用率和抗菌药物使用强度低于对照组[32.18%vs 32.93%,P=0.003;39.99限定日剂量(DDD)/100人天vs 44.19 DDD/100人天],抗菌药物治疗前病原学样本送检率和联合使用重点抗菌药物前病原学样本送检率高于对照组(52.01%vs 23.64%、87.74%vs 77.71%,均P<0.001),临床微生物样本合格率高于对照组(88.77%vs 80.11%,P<0.001),重点监测多重耐药菌总检出率及耐碳青霉烯类肺炎克雷伯菌检出率均低于对照组(40.45%vs 48.42%、29.65%vs 43.17%,均P<0.001)。结论基于FOCUS-PDCA模式的持续改进项目实施能提高住院患者抗菌药物治疗前病原学样本送检率、降低多重耐药菌检出率,通过不断循环逐步促进规范化、标准化医院感染质量管理。 展开更多
关键词 focus-pdca 持续改进 病原学样本送检率 抗菌药物 多重耐药菌
原文传递
网格化管理结合FOCUS-PDCA模式在提升PPIs临床合理用药的研究
2
作者 詹剑玲 崔明 +2 位作者 欧志莲 郑小棵 曹堃 《安徽医专学报》 2025年第3期5-7,19,共4页
目的:探讨网格化管理结合焦点管理循环(FOCUS-PDCA)模式在提升质子泵抑制剂(PPIs)临床合理用药水平中的应用价值。方法:以实施网格化管理+FOCUS-PDCA为分界点,分为干预前组(2022年5月-2023年5月使用PPIs住院患者病例,该组纳入300例)和... 目的:探讨网格化管理结合焦点管理循环(FOCUS-PDCA)模式在提升质子泵抑制剂(PPIs)临床合理用药水平中的应用价值。方法:以实施网格化管理+FOCUS-PDCA为分界点,分为干预前组(2022年5月-2023年5月使用PPIs住院患者病例,该组纳入300例)和干预后组(2023年6月-2024年6月使用网格化管理+FOCUS-PDCA管理模式干预的PPIs住院患者病例,该组纳入300例)。比较两组患者PPIs用药治疗期间不合理事件发生率、PPIs使用费用情况的差异。结果:干预后组PPIs各项不合理用药事件发生率均较干预前组明显更低(P<0.05)。干预后组PPIs每月用药金额、用药频度以及DUI均较干预前组明显更低(P<0.05)。结论:网格化管理与FOCUS-PDCA模式联合应用有助于提升PPIs临床用药的合理性,可预防患者不良反应发生,还能减轻患者经济压力,值得临床推广应用。 展开更多
关键词 网格化管理 focus-pdca模式 质子泵抑制剂 临床合理用药
暂未订购
应用FOCUS-PDCA模式减轻手足外伤老年患者的就诊焦虑
3
作者 梁亚琴 邱萍 王亚梅 《内蒙古医学杂志》 2025年第6期760-763,共4页
目的探讨应用FOCUS-PDCA模式减轻手足外伤老年患者就诊焦虑的方法,提升患者就医体验感,提高患者满意度。方法采用FOCUS-PDCA模式,分析手足外伤老年患者就诊焦虑的原因,优化手足外伤老年患者就诊流程,实施从急诊到住院治疗的各个环节的... 目的探讨应用FOCUS-PDCA模式减轻手足外伤老年患者就诊焦虑的方法,提升患者就医体验感,提高患者满意度。方法采用FOCUS-PDCA模式,分析手足外伤老年患者就诊焦虑的原因,优化手足外伤老年患者就诊流程,实施从急诊到住院治疗的各个环节的全面干预。比较采用FOCUS-PDCA模式后患者住院前与出院时的SAS、SDS评分,比较2023年1—6月收治的手足外伤老年患者与2023年7—12月采用FOCUS-PDCA模式后收治的手足外伤老年患者的满意度。结果FOCUS-PDCA模式后患者总满意度提高了21.3%,就诊过程满意度提高了27.3%。SAS评分由住院前的(66.56±11.06)分下降到出院时的(51.50±9.26)分;SDS评分由住院前的(56.99±3.06)分下降到出院时的(51.11±2.18)分。结论采用FOCUS-PDCA模式可优化就诊流程,减轻手足外伤老年患者就诊焦虑,提升患者就医体验感,提高护理服务满意度。 展开更多
关键词 focus-pdca模式 就诊焦虑 老年患者 手足外伤 干预效果 护理管理
暂未订购
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
4
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
FOCUS-PDCA循环管理在医院医疗设备管理中的应用
5
作者 王聪颖 张明 《医疗装备》 2025年第12期45-47,51,共4页
目的 探讨FOCUS-PDCA循环管理在医院医疗设备管理中的应用效果。方法 前瞻性选取2022年1月至12月潍坊市人民医院的893台医疗设备作为对照组,实施常规管理;选取2023年1月至12月医院的946台医疗设备作为观察组,实施FOCUS-PDCA循环管理。... 目的 探讨FOCUS-PDCA循环管理在医院医疗设备管理中的应用效果。方法 前瞻性选取2022年1月至12月潍坊市人民医院的893台医疗设备作为对照组,实施常规管理;选取2023年1月至12月医院的946台医疗设备作为观察组,实施FOCUS-PDCA循环管理。比较两组管理质量、安全问题发生率及使用人员的满意度。结果 观察组管理质量评分及使用人员的满意度高于对照组,安全问题发生率低于对照组(P<0.05)。结论 FOCUS-PDCA循环管理可提升医院医疗设备管理质量,降低安全问题发生率,提高使用人员的满意度。 展开更多
关键词 focus-pdca循环 医疗设备 管理质量
暂未订购
FOCUS-PDCA在降低住院病案首页填写缺陷率中的应用 被引量:1
6
作者 高雪梅 秦晓华 +1 位作者 俎英杰 韩莉 《现代医院》 2025年第3期363-366,370,共5页
目的应用FOCUS-PDCA降低住院病案首页填写缺陷率,为医疗机构和各级行政管理部门提供高质量病案首页数据。方法以“后疫情期”某院住院病案首页问题增多为切入点,运用FOCUS-PDCA管理模式,依据九个执行步骤,采用甘特图、鱼骨图、柏拉图等... 目的应用FOCUS-PDCA降低住院病案首页填写缺陷率,为医疗机构和各级行政管理部门提供高质量病案首页数据。方法以“后疫情期”某院住院病案首页问题增多为切入点,运用FOCUS-PDCA管理模式,依据九个执行步骤,采用甘特图、鱼骨图、柏拉图等质量管理工具聚焦问题、分析问题、解决问题,不断循环复盘。以2023年1—3月住院病案首页填写缺陷数量和缺陷率为对照组,对比项目实施前后变化。结果2023年1-3月住院病案首页填写缺陷数量为1734项,缺陷率为15.14%,项目实施后,2023年10-12月住院病案首页填写缺陷数量为890项,缺陷率为6.54%,差异具有统计学意义(P<0.05)。结论运用FOCUS-PDCA方法可有效降低住院病案首页填写缺陷率,对患者基本信息、住院过程信息、诊疗信息等数据质量的提升具有重要促进作用。 展开更多
关键词 focus-pdca 住院病案首页 质量控制
暂未订购
基于24Model的动火作业事故致因文本挖掘 被引量:1
7
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
基于FOCUS-PDCA循环的检验科工作人员管理模式创新实践与质量提升效果 被引量:1
8
作者 韩丽莉 《中国卫生产业》 2025年第3期149-152,共4页
目的探讨基于FOCUS-PDCA循环的检验科工作人员管理模式对提升工作质量和工作效率的效果。方法选取2023年1—12月内蒙古自治区血液中心检验科的12名工作人员作为传统组,实施传统管理模式。2024年1—12月将同一批工作人员纳入观察组,实施... 目的探讨基于FOCUS-PDCA循环的检验科工作人员管理模式对提升工作质量和工作效率的效果。方法选取2023年1—12月内蒙古自治区血液中心检验科的12名工作人员作为传统组,实施传统管理模式。2024年1—12月将同一批工作人员纳入观察组,实施基于FOCUS-PDCA循环的管理模式。对比两组工作人员工作质量与工作效率。结果观察组报告准确性(19.47±0.39)分、标准操作遵循度(19.56±0.27)分、样本处理质量(19.39±0.28)分、仪器校准与维护(19.55±0.18)分,均高于传统组的(18.68±0.56)分、(18.88±0.39)分、(18.66±0.39)分、(18.72±0.41)分,差异均有统计学意义(t=4.010,4.966,5.267,6.421;P均<0.05)。观察组工作效率评分均高于传统组,差异均有统计学意义(P均<0.05)。结论基于FOCUS-PDCA循环的检验科工作人员管理模式能够有效提升工作质量和工作效率,是一种科学合理且高效的工作模式。 展开更多
关键词 focus-pdca循环 检验科 工作质量 工作效率
暂未订购
基于FOCUS-PDCA循环重塑合理用药管理体系的实践探索
9
作者 李春芝 韩明月 +5 位作者 陈剑 张士林 张雪梅 李红 石振琛 任玉娇 《中国医疗管理科学》 2025年第2期93-97,共5页
目的探讨采用FOCUS-PDCA循环法重塑合理用药体系以降低医院药品费用占比的管理成效。方法以某三级甲等医院药品费用占比偏高为问题导向,按照FOCUS-PDCA策略的9个步骤,采用鱼骨图、柏拉图等质量管理工具发现问题、分析原因、解决问题,对... 目的探讨采用FOCUS-PDCA循环法重塑合理用药体系以降低医院药品费用占比的管理成效。方法以某三级甲等医院药品费用占比偏高为问题导向,按照FOCUS-PDCA策略的9个步骤,采用鱼骨图、柏拉图等质量管理工具发现问题、分析原因、解决问题,对管理前后各类药品使用情况进行分析并评价管理效果。结果FOCUS-PDCA循环管理后,全院患者的药品费用占比、出院患者次均药品费用、医院A类重点监控药品、B类重点监控药品和普通类药品销售金额均较之前下降,住院医嘱合格率较FOCUS-PDCA循环管理前降低。结论通过FOCUS-PDCA循环管理,建立医院多部门共同协作的局面,优化临床路径,可明显降低医院药品费用占比,实现提质增效。 展开更多
关键词 focus-pdca 合理用药 重点监控药品 药品费用占比
暂未订购
FOCUS-PDCA管理在提高眼科精密器械清洗质量中的应用效果
10
作者 霍旭 沈丹 +3 位作者 岳彤 谢玮 马颖 任永霞 《天津护理》 2025年第4期466-468,共3页
目的:探讨FOCUS-PDCA管理在消毒供应中心眼科精密器械清洗质量中的应用效果。方法:选取天津市某三级甲等专科医院2022年8月至2023年8月消毒供应中心4998件眼科精密器械,实施常规清洗流程管理。另选取2023年9月至2024年9月消毒供应中心5... 目的:探讨FOCUS-PDCA管理在消毒供应中心眼科精密器械清洗质量中的应用效果。方法:选取天津市某三级甲等专科医院2022年8月至2023年8月消毒供应中心4998件眼科精密器械,实施常规清洗流程管理。另选取2023年9月至2024年9月消毒供应中心5050件眼科精密器械,实施FOCUS-PDCA管理。比较实施前后两组眼科精密器械清洗质量达标率、消毒供应中心人员对眼科精密器械清洗理论知识掌握情况、临床医务人员对器械清洗质量的满意度。结果:FOCUS-PDCA实施后眼科精密器械的清洗合格率高于实施前,差异有统计学意义(P<0.05);实施后消毒供应中心人员对精密器械清洗理论知识掌握情况优于实施前,临床医务人员对眼科精密器械清洗质量的满意率高于实施前,差异有统计学意义(P<0.05)。结论:FOCUS-PDCA管理可提高眼科精密器械的清洗质量,提高消毒供应中心人员对精密器械清洗知识掌握情况及临床医务人员对精密器械清洗质量的满意率。 展开更多
关键词 消毒供应中心 focus-pdca 眼科 精密器械 清洗质量
暂未订购
Prognostic model for esophagogastric variceal rebleeding after endoscopic treatment in liver cirrhosis: A Chinese multicenter study 被引量:2
11
作者 Jun-Yi Zhan Jie Chen +7 位作者 Jin-Zhong Yu Fei-Peng Xu Fei-Fei Xing De-Xin Wang Ming-Yan Yang Feng Xing Jian Wang Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期85-101,共17页
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p... BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients. 展开更多
关键词 Esophagogastric variceal bleeding Variceal rebleeding Liver cirrhosis Prognostic model Risk stratification Secondary prophylaxis
暂未订购
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
12
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
FOCUS-PDCA管理模式在静脉用药调配中心管理中的应用效果分析
13
作者 高雪 《中国社区医师》 2025年第21期160-162,共3页
目的:分析FOCUS-PDCA管理模式在静脉用药调配中心管理中的应用效果。方法:选取2022年2—8月泰安市妇幼保健院收治的60例患者作为参照组,选取2022年9月—2023年2月收治的60例患者作为试验组,两组患者的药物由同一批工作人员调配。参照组... 目的:分析FOCUS-PDCA管理模式在静脉用药调配中心管理中的应用效果。方法:选取2022年2—8月泰安市妇幼保健院收治的60例患者作为参照组,选取2022年9月—2023年2月收治的60例患者作为试验组,两组患者的药物由同一批工作人员调配。参照组采用常规管理,试验组采用FOCUS-PDCA管理模式。比较两组管理效果。结果:与参照组相比,试验组药品管理、药品医嘱审核、药品配置、药品发放评分及总分更高(P<0.001)。试验组患者不良事件总发生率低于参照组(P=0.015)。结论:FOCUS-PDCA管理模式在静脉用药调配中心管理中的应用效果显著,有助于提高管理质量,降低患者用药不良事件发生率。 展开更多
关键词 静脉用药调配中心 管理质量 focus-pdca管理模式 不良事件
暂未订购
FOCUS-PDCA结合风险预警干预对重症监护病房留置尿管患者的影响 被引量:1
14
作者 邵英 郭兰 梁锋鸣 《现代医药卫生》 2025年第3期680-684,共5页
目的 探讨FOCUS-PDCA结合风险预警干预在重症监护病房(ICU)留置尿管患者中的应用效果。方法 选取2022年1月至2023年12月该院收治的ICU留置尿管患者88例作为研究对象,按入院时间顺序分为对照组(2022年1-12月)和观察组(2023年1-12月),每... 目的 探讨FOCUS-PDCA结合风险预警干预在重症监护病房(ICU)留置尿管患者中的应用效果。方法 选取2022年1月至2023年12月该院收治的ICU留置尿管患者88例作为研究对象,按入院时间顺序分为对照组(2022年1-12月)和观察组(2023年1-12月),每组44例。对照组采用常规护理干预,观察组采用FOCUS-PDCA结合风险预警干预。观察2组患者感染发生情况、尿道口清洁率、尿管固定正确率、尿管留置时间、住院时间、疼痛、治疗依从率等变化情况。结果 观察组患者感染发生率明显低于对照组,护理后尿道口清洁率、尿管固定正确率、治疗依从率均明显高于对照组,尿管留置、住院时间均明显短于对照组,视觉模拟疼痛量表评分明显低于对照组,差异均有统计学意义(P<0.05)。结论 在ICU留置导尿管患者临床治疗中选用FOCUS-PDCA结合风险预警干预不仅可有效控制发生感染的风险,促进康复速度,还可有效缓解患者疼痛感,促使其积极、主动配合治疗,进而获得明显的护理有效性。 展开更多
关键词 留置导尿管 重症监护病房 focus-pdca 风险预警干预 影响因素分析
暂未订购
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
15
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:2
16
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
17
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
A Multi-Level Semantic Constraint Approach for Highway Tunnel Scene Twin Modeling 被引量:1
18
作者 LI Yufei XIE Yakun +3 位作者 CHEN Mingzhen ZHAO Yaoji TU Jiaxing HU Ya 《Journal of Geodesy and Geoinformation Science》 2025年第2期37-56,共20页
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge... As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes. 展开更多
关键词 highway tunnel twin modeling multi-level semantic constraints tunnel vehicles multidimensional modeling
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:3
19
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部