Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight natur...Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight nature. These characteristics make them ideal for applications in vibration damping, heat insulation and weight reduction. In recent years, there has been increasing interest in the application of interfering energy conversion such as electromagnetic wave (EMW) and sound, where the metal foams could emerge as a solution. This paper will present a comprehensive review of the preparation methods as well as the interference energy converting mechanisms for metal foams. Typically, the progress and prospective aspects of metal foams for EMW absorption, electromagnetic interference (EMI) shielding and sound absorption have been emphasized. Through this review, we aspire to offer valuable insights for the development of multifunctional applications with metal foam materials.展开更多
Tannins are polyphenols widely present in the plant kingdom,commonly divided into two groups:condensed and hydrolysable tannins.Sustainable furanic bio-foams based on condensed tannins have been largely studied,but li...Tannins are polyphenols widely present in the plant kingdom,commonly divided into two groups:condensed and hydrolysable tannins.Sustainable furanic bio-foams based on condensed tannins have been largely studied,but little is described about the use of hydrolysable tannins for this material.This study examined the potential of hydrolysable chestnut tannin in comparison to condensed mimosa tannins to produce furanic foams by chemical expansion.Due to the low reactivity of the hydrolysable tannin,the use of an external source for its polymerization and curing was necessary.Through Fourier transform infrared spectroscopy(FTIR)chromatography,it was possible to observe that the new foams presented small differences in functional groups compared to the condensed tannin foams,presenting peaks related to carboxyl groups.In terms of physical properties,the chestnut foams showed an apparent density 36%higher than the conventional mimosa tannin foams and a superior hydrophilic character.In terms of thermal properties,both foams exhibit high thermal stability,with the acacia tannin foam being slightly superior.In summary,this research paves the way for new applications of hydrolysable tannins in bio-foams and materials science.展开更多
A single-phase anti-perovskite medium-entropy alloy nitride foams(MEANFs),as innovative materials for electromagnetic wave(EMW)absorption,have been successfully synthesized through the lattice expansion induced by nit...A single-phase anti-perovskite medium-entropy alloy nitride foams(MEANFs),as innovative materials for electromagnetic wave(EMW)absorption,have been successfully synthesized through the lattice expansion induced by nitrogen doping.This achievement notably overcomes the inherent constraints of conventional metal-based absorbers,including low resonance frequency,high conductivity,and elevated density,for the synergistic advantages provided by multimetallic alloys and foams.Microstructural analysis with comprehensive theoretical calculations provides in-depth insights into the formation mechanism,electronic structure,and magnetic moment of MEANFs.Furthermore,deliberate component design along with the foam structure proves to be an effective strategy for enhancing impedance matching and absorption.The results show that the MEANFs exhibit a minimum reflection loss(RL_(min))value of-60.32 dB and a maximum effective absorption bandwidth(EAB_(max))of 5.28 GHz at 1.69 mm.This augmentation of energy dissipation in EMW is predominantly attributed to factors such as porous structure,interfacial polarization,defect-induced polarization,and magnetic resonance.This study demonstrates a facile and efficient approach for synthesizing single-phase medium-entropy alloys,emphasizing their potential as materials for electromagnetic wave absorption due to their adjustable magnetic-dielectric properties.展开更多
To address the severe electromagnetic(EM)pollution and thermal exhaustion issues in modern electronics,C@Mn_(x)O_(y) foams were first reported as an advanced multifunctional filler with superior microwave absorption,R...To address the severe electromagnetic(EM)pollution and thermal exhaustion issues in modern electronics,C@Mn_(x)O_(y) foams were first reported as an advanced multifunctional filler with superior microwave absorption,Radar wave stealth,and thermal dissipation.They were synthesized using a simple one-step annealing route,in which PVP and in-situ generated gas bubbles play a crucial role in the foam formation.Our results show that the C@Mn_(x)O_(y) foams possess excellent electrical insulation and a large thermal conductivity of 3.58 W(m K)^(–1) at a low load of 5 wt.%.Also,they exhibit prominent microwave absorption capabilities(MWACs)with a strong absorption(–46.03 dB)and a wide bandwidth(11.04 GHz)in a low load(30 wt.%).When they are then used as a patch,the wideband Radar cross-section can be effectively reduced by up to 41.34 dB m^(2).This performance outperforms most other heterostructures.Furthermore,the mechanism of dielectric loss and thermal transfer at the atomic level is revealed by the First-principle calculations of the density of states(DOS)and the phonon density of states(PDOS).The combination of C,MnO,and Mn_(3)O_(4) disrupts local microstructure symmetry and induces extra electrical dipoles at the heterointerfaces,benefiting the enhanced MWACs of C@Mn_(x)O_(y) foams along with defect polarization and multiple scattering.Their enhanced TC could be credited to the co-transmission of low phonon-boundary/phonon-defect scattering and multiple-frequency phonons from C,MnO,and Mn_(3)O_(4).Overall,the C@Mn_(x)O_(y) foams are highly promising for application in EM protection,absorption,and thermal management.What is more,this study provides a theoretical guide for designing heterostructures as effective microwave absorbing and thermally conductive materials used in modern electronics.展开更多
As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal...As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.展开更多
Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with ...Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with content of 0.6%-1.4% (mass fraction) was added to the molten pure aluminum and the foaming condition was controlled in a temperature range from 933 to 1 013 K, Ca amount of 1.5%-3.0% (mass fraction), stirring time of 0.5-2.5 min and holding time of 1.5-4.0 min to obtain homogeneous aluminum foams. The fabricated aluminum foams were characterized by XRD, SEM and Image-pro plus. The mechanical properties of the aluminum foams with different relative density were tested. The result indicates that the foaming agent (ZrH2) is suitable for the preparation of small aperture aluminum foams with average pore diameter of 1 mm. Inter-metallic compounds and Al2O3 have effect on the melt viscosity. The aluminum foams experience linear elastic, platforms and densification process and had a higher efficiency of energy absorption.展开更多
Poly(vinylidene fluoride)(PVDF)foam has received widespread attention due to its high strength,and excellent combination of flame-retardancy,antibacterial performance,and chemical stability.However,the foaming ability...Poly(vinylidene fluoride)(PVDF)foam has received widespread attention due to its high strength,and excellent combination of flame-retardancy,antibacterial performance,and chemical stability.However,the foaming ability of conventional PvDF is severely limited by its rapid crystallization kinetics and poor melt strength.Although ultra-high molecular weight PVDF(H-PVDF)theoretically offers prolonged melt elasticity favorable for foaming,the extremely high melt viscosity poses substantial processing challenges,and its foaming behavior has remained largely unexplored.To address these issues,this study proposes a novel fabrication strategy combining solvent casting with microcellular foaming to prepare H-PVDF foams.Dynamic mechanical analysis and differential scanning calorimetry reveal that extensive chain entanglements in H-PVDF impose constraints on crystallization and significantly enhance melt strength.By tuning the processing parameters,the distinctive foaming be-havior of H-PVDF under various conditions is systematically elucidated.Remarkably,a record-high expansion ratio of 55.6-fold is achieved,ac-companied by a highly uniform and fine cellular structure.The resulting H-PVDF foams exhibit a low thermal conductivity of 31.8 mW·m^(-1).K^(-1),while retaining excellent compressive strength,flame-retardancy,and hydrophobicity.These outstanding properties highlight the great potential of H-PVDF foams as the thermal insulation materials for applications in aerospace,energy infrastructure,and other extreme environments.展开更多
This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rei...This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rein-forcement.Tapioca starch and glutinous starch were blended in varying ratios(100:0–0:100)to optimize the base material’s properties.The morphology,density,flexural strength,and impact strength of these starch blends were evaluated.The results revealed a trade-off between impact strength and density,with increasing glutinous starch content favoring impact resistance but also leading to higher density.The optimal ratio of tapioca to glutinous starch for achieving maximumflexural strength and modulus was determined to be 60:40.Theflexural strength of the composite material at this ratio reached a peak value of 5.3±0.6 MPa,significantly surpassing theflexural strength of pure tapioca foam,which was measured to be 3.5±0.4 MPa.Building on this foundation,novel lami-nar composite foams were fabricated using the 60:40 starch blend reinforced with mulberry paper,kraft paper,and newsprint paper.To enhance the interfacial adhesion between the starch matrix and paper reinforcement,a silane coupling agent was employed at a 10 wt%loading on the paper.The incorporation of paper reinforcement into starch foams was found to enhance their mechanical properties.Specifically,flexural strength values increased from 5.3±0.6 MPa for the unreinforced starch foam to 6.8±0.6 MPa,8.1±0.9 MPa,and 7.4±0.1 MPa when reinforced with mulberry paper,kraft paper,and newsprint paper,respectively.Notably,kraft paper reinforcement led to the most enhancements inflexural strength,flexural modulus,and impact strength.This research paves the way for developing sustainable cushioning materials with competitive mechanical properties using bio-based resources like starch and paper.展开更多
In this study,two series of foams based on tannic acid(TA),furfuryl alcohol(FA),soybean protein isolate(SPI),and casein(CA),namely TA–FA–SPI(TS series)and TA–FA–CA(TC series)were developed,and their properties wer...In this study,two series of foams based on tannic acid(TA),furfuryl alcohol(FA),soybean protein isolate(SPI),and casein(CA),namely TA–FA–SPI(TS series)and TA–FA–CA(TC series)were developed,and their properties were enhanced by adding poplar fibers(WF).From the samples produced,a complete set of characterization was performed including possible crosslinking reactions,morphology,mechanical properties,flame retardancy,thermal insulation and thermal stability.Fourier-transform infrared spectroscopy(FTIR)revealed possible covalent crosslinking among the components and hydrogen bonding between WF and the matrix.Viscosity results indicated that lower prepolymer viscosity led to lower apparent density,while WF addition reduced even more the density.Mechanical tests showed that the maximum compressive strengths were good,while WF improved the compressive strength by up to 56%.Scanning electron microscopy(SEM)showed uniform cell structures,but small open pores were observed.Two-dimensional(2D)CT scan images confirmed the good compatibility between WF and the matrix,with low anisotropy in the material.Friability tests indicated that WF decreased the pulverization ratio of the materials by up to 42%.Thermogravimetric analysis(TGA)showed good thermal stability of the materials up to 328°C.Vertical burning tests showed that the materials were self-extinguishing without residue(dripping).The lowest thermal conductivity was 0.04 W/m·K.These results suggest that these novel formaldehyde-free,high biomass content(95%–96%)foams and composite foams have high potential to replace traditional phenolic foams(PF)in applications such as construction,transportation,packaging,and thermal insulation.展开更多
Flexible polymer-based foam sensors have significant potential for application in wearable electronics and motion monitoring.However,these prospects are hindered by the complex and unenvironmentally friendly manufactu...Flexible polymer-based foam sensors have significant potential for application in wearable electronics and motion monitoring.However,these prospects are hindered by the complex and unenvironmentally friendly manufacturing processes.In this study,we employed melt blending and supercritical carbon dioxide foaming to fabricate an ethylene-vinyl acetate copolymer(EVA)/low-density polyethylene(LDPE)/carbon nanotube(CNT)piezoresistive foam sensor.The cross-linking agent bis(tert-butyldioxyisopropyl)benzene and the conductive filler CNT were incorporated into the EVA/LDPE composite,successfully achieving a chemically cross-linked and physically entangled composite structure that significantly enhanced the storage modulus and complex viscosity.Additionally,the compressive strength of EVA/LDPE/CNT foam with 10 parts per hundred rubber(phr)CNT reached 1.37 MPa at 50%compression,marking a 340%increase compared to the 0.31 MPa of the CNT-free sample.Furthermore,the EVA/LDPE/CNT composite foams,which incorporated 10 phr CNT,were prepared under specific foaming conditions,resulting in an ultra-low density of 0.11 g/cm^(3) and a higher sensitivity,with a gauge factor of–2.3.The piezoresistive foam sensors developed in this work could accurately detect human motion,thereby expanding their applications in the field of piezoresistive foam sensors and providing an effective strategy for the advancement of high-performance piezoresistive foam sensors.展开更多
Two cross⁃sectional configurations of thin⁃walled square tubes partially filled with lightweight metallic foams are proposed,and termed as double⁃cell configuration partially filled with foam(DC⁃PF)and double⁃tube con...Two cross⁃sectional configurations of thin⁃walled square tubes partially filled with lightweight metallic foams are proposed,and termed as double⁃cell configuration partially filled with foam(DC⁃PF)and double⁃tube configuration partially filled with foam(DT⁃PF),respectively.The bending crashworthiness is investigated based on three⁃point bending tests using finite element ABAQUS/Explicit code.The two key mechanical indicators including Crash Load Efficiency(CLE)and Specific Energy Absorption(SEA)are introduced to evaluate the effect of foams in comparison with empty square tubes and fully filled square tubes.The numerical results show that the two partially filled configurations,especially DT⁃PF,display dramatically excellent bending crashworthiness compared with empty and fully filled square tubes.There exists a foam density threshold,beyond which the CLE of DT⁃PF achieves a maximum constant.In addition,there seems to be another foam density threshold,beyond which the SEA of DT⁃PF gets to the maximum value.It is also shown that the foam density threshold corresponding to the maximum SEA varies with the thickness of thin⁃walled square tubes.展开更多
Early investigations of dielectric permittivity of rigid polyurethane foams at low frequencies were made on petrochemical-origin foams,mainly by means of parallel plate capacitors.In the present investigation biopolyo...Early investigations of dielectric permittivity of rigid polyurethane foams at low frequencies were made on petrochemical-origin foams,mainly by means of parallel plate capacitors.In the present investigation biopolyol was synthesized from Latvia-grown rapeseeds’oil by the transesterification method with triethanolamine,in an environmentally friendly process,without emission of harmful substances,at temperatures 175℃±5℃.Rigid,closed-cell rapeseed oil polyol polyurethane biofoams and petrochemical foams were made ensuring content of the renewable rapeseed oil polyol in ready foams 27 wt.%–29 wt.%.Dielectric permittivity of the polyurethane foams and the underlying monolithic petrochemical-origin polyurethane and biopolyurethane was measured with a non-destructive dielectric spectrometer equipped with a capacitive sensor of one-side access type at 16 discrete frequencies distributed geometrically over the band 10 Hz,…,330 kHz.Permittivity value of the gaseous phase in the closed-cells was estimated to beεg≈1.001 that corresponds to the values,characteristic for the most of gases.Dielectric permittivity of petrochemical polyurethane foams and the mentioned biofoams was compared with permittivity of polyurethane foams from industrial producers Sika JSC and General Plastics Manufacturing Co.Polyurethane foams of the developed formulation exhibit competitive,low dielectric permittivity,not exceeding that of the foams from industrial producers:petrochemical foams up to 550 kg/m^(3) and the mentioned biofoams,comprising the renewable rapeseed oil polyol,up to densities 230–250 kg/m^(3).Considering petrochemical-origin polyurethane foams as a heterogeneous media“Polymer—gaseous phase”,the applicability of the rule of mixture and Maxwell–Garnett equation to model mathematically the dependence of effective dielectric permittivity on the volume fraction of phases was showed.展开更多
The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and nume...The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and numerically. Foam specimens prepared from conditioned melt were tested under uniaxial compressive loading condition. The cell wall microstructure and fracture were observed through optical microscope(OM) and scanning electron microscope(SEM), which indicates that the cell wall property is impaired by the defects in cell walls and oxide films on the cell wall surface. Subsequently, finite element(FE) models based on three-dimensional thin shell Kelvin tetrakaidecahedron were developed based on the mechanical properties of the raw material and solid material that are determined by using experimental measurements. The simulation results show that the plateau stress of the nominal stress-strain curve exhibits a linear relationship with the yield strength of the cell wall material. The simulation plateau stress is higher than the experimental data, partly owing to the substitution of solid material for cell wall material in the process of the establishment of FE models.展开更多
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ...Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.展开更多
Silicon carbide (SIC) foams with a continuously connected open-cell structure were prepared and characterized for their mechanical performance. The apparent densities of SiC foams were controlled between about 0.4 a...Silicon carbide (SIC) foams with a continuously connected open-cell structure were prepared and characterized for their mechanical performance. The apparent densities of SiC foams were controlled between about 0.4 and 2.3 g/cm^3, with corresponding compressive strengths ranging from about 23 to 60 MPa and flexural strengths from about 8 to 30 MPa. Compressive testing of the SiC foams yielded stress-strain curves with only one linear-elastic region, which is different from those reported on ceramic foams in literature. This can possibly be attributed to the existence of filaments with fine, dense and high strength microstructures. The SiC and the filaments respond homogeneously to applied loading.展开更多
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevla...Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.展开更多
To improve the oxidation resistance of boron-modified carbon foams, the B2O3 coating was prepared on boron-modified carbon foams by low-cost slurry method. The microstructures and phase compositions of the coated carb...To improve the oxidation resistance of boron-modified carbon foams, the B2O3 coating was prepared on boron-modified carbon foams by low-cost slurry method. The microstructures and phase compositions of the coated carbon foams were characterized by scanning electron microscopy and X-ray diffraction, respectively. Oxidation resistances of uncoated and coated boron-modified carbon foams were investigated at 873 K in air. The results showed that as-received B2O3 coating could protect boron-modified carbon foams from oxidation at 873 K. B2O3-coated carbon foam doped with 7% B2O3 (mass fraction) (BO-7) had better oxidation resistance, exhibiting mass loss of 17.40% after oxidation at 873 K for 120 min. The melting glass layer formed on the surface of BO-7 could prevent oxygen from diffusing into boron-modified carbon foams substrate during oxidation to some extent.展开更多
Municipal solid waste incineration products of bottom ash(BA),fly ash(FA),and pickling sludge(PS),causing severe environ-mental pollution,were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foami...Municipal solid waste incineration products of bottom ash(BA),fly ash(FA),and pickling sludge(PS),causing severe environ-mental pollution,were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering.The effect of the BA/FA mass ratio on the phase composition,pore morphology,pore size distribution,physical properties,and glass structure was investigated,with results showing that with the increase in the BA/FA ratio,the content of the glass phase,Si-O-Si,and Q3Si units decrease gradually.The glass transmission temperature of the mixture was also reduced.When combined,the glass viscosity decreases,causing bubble coalescence and uneven pore distribution.Glass ceramic foams with uniform spherical pores are fabricated.When the content of BA,FA,and PS are 35wt%,45wt%,and 20wt%,respectively,contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3,porosity of 56.01%,and compressive strength exceeding 16.23 MPa.This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.展开更多
The damping properties of an Mg alloy foam and its composite foams were investigated using a dynamic mechanical thermal analyzer. The results show that the loss factors of both the Mg alloy and its composite foams are...The damping properties of an Mg alloy foam and its composite foams were investigated using a dynamic mechanical thermal analyzer. The results show that the loss factors of both the Mg alloy and its composite foams are insensitive to temperature and loading frequency when the temperature is less than a critical temperature Tcrit. However, it increases when the temperature exceeds the Tcrit values, which are 200 and 250°C for the Mg alloy foam and the Mg alloy/SiCp composite foams, respectively. The Mg alloy/SiCp composite foams exhibit a higher damping capacity than the Mg alloy foam when the temperature is below 200°C. By contrast, the Mg alloy foam exhibits a better damping capacity when the temperature exceeds 250°C. The variation in the damping capacity is attributed to differences in the internal friction sources, such as the characteristics of the matrix material, abundant interfaces, and interfacial slipping caused by SiC particles, as well as to macrodefects in the Mg alloy and its composite foams.展开更多
The introduction of porous structures into high-entropy ceramics is expected to further improve its thermal insulation performance.In this work,a series of novel rare-earth-niobate high-entropy ceramic foams((Dy_(0.2)...The introduction of porous structures into high-entropy ceramics is expected to further improve its thermal insulation performance.In this work,a series of novel rare-earth-niobate high-entropy ceramic foams((Dy_(0.2)Ho_(0.2)Y_(0.2)Er_(0.2)Yb_(0.2))_(3)NbO_(7))with hierarchical pore structures were prepared by a particle-stabilized foaming method.Atomic-scale analysis reveals that high entropy causes atom displacement and lattice distortion.The high-entropy ceramic foams exhibit high porosity(90.13%-96.13%)and ultralow thermal conductivity(0.0343-0.0592 W/(m·K))at room temperature.High-entropy ceramic foam prepared by a 20 wt%slurry sintered at 1500℃has the porosity of 96.12%and extremely low thermal conductivity of 0.0343 W/(m·K).The existence of walls and secondary pores contributes to reduced thermal conductivity.There is a temperature difference of over 800℃between frontside and backside of the sample under fire resistance test.The research indicates that these as-prepared high-entropy ceramic foams are expected to be promising thermal insulation materials.展开更多
基金supported by the National Natural Science Foundation of China(No.52271180)the Leading Goose R&D Program of Zhejiang Province(2022C01110).
文摘Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight nature. These characteristics make them ideal for applications in vibration damping, heat insulation and weight reduction. In recent years, there has been increasing interest in the application of interfering energy conversion such as electromagnetic wave (EMW) and sound, where the metal foams could emerge as a solution. This paper will present a comprehensive review of the preparation methods as well as the interference energy converting mechanisms for metal foams. Typically, the progress and prospective aspects of metal foams for EMW absorption, electromagnetic interference (EMI) shielding and sound absorption have been emphasized. Through this review, we aspire to offer valuable insights for the development of multifunctional applications with metal foam materials.
基金supported by a grant overseen by the French National Research Agency(ANR),as part of the“Investissements d’Avenir”program(ANR-11-LABX-0002-01,Lab of Excellence ARBRE)supported by“Lorraine Universitéd’Excellence”Master Grant,ORION program and by the French Ministry of Foreign Office through EIFFEL program.
文摘Tannins are polyphenols widely present in the plant kingdom,commonly divided into two groups:condensed and hydrolysable tannins.Sustainable furanic bio-foams based on condensed tannins have been largely studied,but little is described about the use of hydrolysable tannins for this material.This study examined the potential of hydrolysable chestnut tannin in comparison to condensed mimosa tannins to produce furanic foams by chemical expansion.Due to the low reactivity of the hydrolysable tannin,the use of an external source for its polymerization and curing was necessary.Through Fourier transform infrared spectroscopy(FTIR)chromatography,it was possible to observe that the new foams presented small differences in functional groups compared to the condensed tannin foams,presenting peaks related to carboxyl groups.In terms of physical properties,the chestnut foams showed an apparent density 36%higher than the conventional mimosa tannin foams and a superior hydrophilic character.In terms of thermal properties,both foams exhibit high thermal stability,with the acacia tannin foam being slightly superior.In summary,this research paves the way for new applications of hydrolysable tannins in bio-foams and materials science.
基金supported by the National Natural Science Foundation of China(Grant No.52071294)the National Key Research and Development Program(Grant No.2022YFE0109800)the Natural Science Foundation of Zhejiang Province(Grant No.LY20E020015).
文摘A single-phase anti-perovskite medium-entropy alloy nitride foams(MEANFs),as innovative materials for electromagnetic wave(EMW)absorption,have been successfully synthesized through the lattice expansion induced by nitrogen doping.This achievement notably overcomes the inherent constraints of conventional metal-based absorbers,including low resonance frequency,high conductivity,and elevated density,for the synergistic advantages provided by multimetallic alloys and foams.Microstructural analysis with comprehensive theoretical calculations provides in-depth insights into the formation mechanism,electronic structure,and magnetic moment of MEANFs.Furthermore,deliberate component design along with the foam structure proves to be an effective strategy for enhancing impedance matching and absorption.The results show that the MEANFs exhibit a minimum reflection loss(RL_(min))value of-60.32 dB and a maximum effective absorption bandwidth(EAB_(max))of 5.28 GHz at 1.69 mm.This augmentation of energy dissipation in EMW is predominantly attributed to factors such as porous structure,interfacial polarization,defect-induced polarization,and magnetic resonance.This study demonstrates a facile and efficient approach for synthesizing single-phase medium-entropy alloys,emphasizing their potential as materials for electromagnetic wave absorption due to their adjustable magnetic-dielectric properties.
基金financially supported by the National Natural Science Foundation of China(No.52073260)the Zhejiang Provincial Natural Science Foundation of China(Nos.LGG21E020002 and LZ24E020004)the Major industrial projects of Jinhua City(No.2024A11011).
文摘To address the severe electromagnetic(EM)pollution and thermal exhaustion issues in modern electronics,C@Mn_(x)O_(y) foams were first reported as an advanced multifunctional filler with superior microwave absorption,Radar wave stealth,and thermal dissipation.They were synthesized using a simple one-step annealing route,in which PVP and in-situ generated gas bubbles play a crucial role in the foam formation.Our results show that the C@Mn_(x)O_(y) foams possess excellent electrical insulation and a large thermal conductivity of 3.58 W(m K)^(–1) at a low load of 5 wt.%.Also,they exhibit prominent microwave absorption capabilities(MWACs)with a strong absorption(–46.03 dB)and a wide bandwidth(11.04 GHz)in a low load(30 wt.%).When they are then used as a patch,the wideband Radar cross-section can be effectively reduced by up to 41.34 dB m^(2).This performance outperforms most other heterostructures.Furthermore,the mechanism of dielectric loss and thermal transfer at the atomic level is revealed by the First-principle calculations of the density of states(DOS)and the phonon density of states(PDOS).The combination of C,MnO,and Mn_(3)O_(4) disrupts local microstructure symmetry and induces extra electrical dipoles at the heterointerfaces,benefiting the enhanced MWACs of C@Mn_(x)O_(y) foams along with defect polarization and multiple scattering.Their enhanced TC could be credited to the co-transmission of low phonon-boundary/phonon-defect scattering and multiple-frequency phonons from C,MnO,and Mn_(3)O_(4).Overall,the C@Mn_(x)O_(y) foams are highly promising for application in EM protection,absorption,and thermal management.What is more,this study provides a theoretical guide for designing heterostructures as effective microwave absorbing and thermally conductive materials used in modern electronics.
基金supported by the Key Research and Development Program of Sichuan Province(Grant No.2023ZHCG0050)the Fundamental Research Funds for the Central Universities of China(Grant No.2682024QZ006 and 2682024ZTPY042)the Analytic and Testing Center of Southwest Jiaotong University.
文摘As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.
基金Project (2004AA33G060) supported by the National High-tech Research and Development Program of China
文摘Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with content of 0.6%-1.4% (mass fraction) was added to the molten pure aluminum and the foaming condition was controlled in a temperature range from 933 to 1 013 K, Ca amount of 1.5%-3.0% (mass fraction), stirring time of 0.5-2.5 min and holding time of 1.5-4.0 min to obtain homogeneous aluminum foams. The fabricated aluminum foams were characterized by XRD, SEM and Image-pro plus. The mechanical properties of the aluminum foams with different relative density were tested. The result indicates that the foaming agent (ZrH2) is suitable for the preparation of small aperture aluminum foams with average pore diameter of 1 mm. Inter-metallic compounds and Al2O3 have effect on the melt viscosity. The aluminum foams experience linear elastic, platforms and densification process and had a higher efficiency of energy absorption.
基金supported by the National Natural Science Foundation of China(No.52175341)Shandong Provincial Natural Science Foundation(No.ZR2022JQ24)+2 种基金Funding Project of Jinan City's New Twenty Items for Colleges and Universities(No.202333038)Excellent Young Team Project of Central Universities(No.2023QNTD002)Qingdao Key Technology Research and Industrialization Demonstration Project(No.24-1-2-qljh-10-gx).
文摘Poly(vinylidene fluoride)(PVDF)foam has received widespread attention due to its high strength,and excellent combination of flame-retardancy,antibacterial performance,and chemical stability.However,the foaming ability of conventional PvDF is severely limited by its rapid crystallization kinetics and poor melt strength.Although ultra-high molecular weight PVDF(H-PVDF)theoretically offers prolonged melt elasticity favorable for foaming,the extremely high melt viscosity poses substantial processing challenges,and its foaming behavior has remained largely unexplored.To address these issues,this study proposes a novel fabrication strategy combining solvent casting with microcellular foaming to prepare H-PVDF foams.Dynamic mechanical analysis and differential scanning calorimetry reveal that extensive chain entanglements in H-PVDF impose constraints on crystallization and significantly enhance melt strength.By tuning the processing parameters,the distinctive foaming be-havior of H-PVDF under various conditions is systematically elucidated.Remarkably,a record-high expansion ratio of 55.6-fold is achieved,ac-companied by a highly uniform and fine cellular structure.The resulting H-PVDF foams exhibit a low thermal conductivity of 31.8 mW·m^(-1).K^(-1),while retaining excellent compressive strength,flame-retardancy,and hydrophobicity.These outstanding properties highlight the great potential of H-PVDF foams as the thermal insulation materials for applications in aerospace,energy infrastructure,and other extreme environments.
基金funded by the Thailand Science Research and Innovation(TSRI)under Fundamental Fund 2023(Project:Advanced Materials and Manufacturing for Applications in New S-Curve Industries).
文摘This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rein-forcement.Tapioca starch and glutinous starch were blended in varying ratios(100:0–0:100)to optimize the base material’s properties.The morphology,density,flexural strength,and impact strength of these starch blends were evaluated.The results revealed a trade-off between impact strength and density,with increasing glutinous starch content favoring impact resistance but also leading to higher density.The optimal ratio of tapioca to glutinous starch for achieving maximumflexural strength and modulus was determined to be 60:40.Theflexural strength of the composite material at this ratio reached a peak value of 5.3±0.6 MPa,significantly surpassing theflexural strength of pure tapioca foam,which was measured to be 3.5±0.4 MPa.Building on this foundation,novel lami-nar composite foams were fabricated using the 60:40 starch blend reinforced with mulberry paper,kraft paper,and newsprint paper.To enhance the interfacial adhesion between the starch matrix and paper reinforcement,a silane coupling agent was employed at a 10 wt%loading on the paper.The incorporation of paper reinforcement into starch foams was found to enhance their mechanical properties.Specifically,flexural strength values increased from 5.3±0.6 MPa for the unreinforced starch foam to 6.8±0.6 MPa,8.1±0.9 MPa,and 7.4±0.1 MPa when reinforced with mulberry paper,kraft paper,and newsprint paper,respectively.Notably,kraft paper reinforcement led to the most enhancements inflexural strength,flexural modulus,and impact strength.This research paves the way for developing sustainable cushioning materials with competitive mechanical properties using bio-based resources like starch and paper.
基金funded by the Natural Sciences and Engineering Research Council of Canada(NSERC)for financial support,Grant Nos.CG125664 and GF136078.
文摘In this study,two series of foams based on tannic acid(TA),furfuryl alcohol(FA),soybean protein isolate(SPI),and casein(CA),namely TA–FA–SPI(TS series)and TA–FA–CA(TC series)were developed,and their properties were enhanced by adding poplar fibers(WF).From the samples produced,a complete set of characterization was performed including possible crosslinking reactions,morphology,mechanical properties,flame retardancy,thermal insulation and thermal stability.Fourier-transform infrared spectroscopy(FTIR)revealed possible covalent crosslinking among the components and hydrogen bonding between WF and the matrix.Viscosity results indicated that lower prepolymer viscosity led to lower apparent density,while WF addition reduced even more the density.Mechanical tests showed that the maximum compressive strengths were good,while WF improved the compressive strength by up to 56%.Scanning electron microscopy(SEM)showed uniform cell structures,but small open pores were observed.Two-dimensional(2D)CT scan images confirmed the good compatibility between WF and the matrix,with low anisotropy in the material.Friability tests indicated that WF decreased the pulverization ratio of the materials by up to 42%.Thermogravimetric analysis(TGA)showed good thermal stability of the materials up to 328°C.Vertical burning tests showed that the materials were self-extinguishing without residue(dripping).The lowest thermal conductivity was 0.04 W/m·K.These results suggest that these novel formaldehyde-free,high biomass content(95%–96%)foams and composite foams have high potential to replace traditional phenolic foams(PF)in applications such as construction,transportation,packaging,and thermal insulation.
基金supported by the National Natural Science Foundation of China(No.52473026)。
文摘Flexible polymer-based foam sensors have significant potential for application in wearable electronics and motion monitoring.However,these prospects are hindered by the complex and unenvironmentally friendly manufacturing processes.In this study,we employed melt blending and supercritical carbon dioxide foaming to fabricate an ethylene-vinyl acetate copolymer(EVA)/low-density polyethylene(LDPE)/carbon nanotube(CNT)piezoresistive foam sensor.The cross-linking agent bis(tert-butyldioxyisopropyl)benzene and the conductive filler CNT were incorporated into the EVA/LDPE composite,successfully achieving a chemically cross-linked and physically entangled composite structure that significantly enhanced the storage modulus and complex viscosity.Additionally,the compressive strength of EVA/LDPE/CNT foam with 10 parts per hundred rubber(phr)CNT reached 1.37 MPa at 50%compression,marking a 340%increase compared to the 0.31 MPa of the CNT-free sample.Furthermore,the EVA/LDPE/CNT composite foams,which incorporated 10 phr CNT,were prepared under specific foaming conditions,resulting in an ultra-low density of 0.11 g/cm^(3) and a higher sensitivity,with a gauge factor of–2.3.The piezoresistive foam sensors developed in this work could accurately detect human motion,thereby expanding their applications in the field of piezoresistive foam sensors and providing an effective strategy for the advancement of high-performance piezoresistive foam sensors.
基金Sponsored by National Natural Science Foundation of China (Grant Nos.12272064 and 12101086)University Natural Science Research Project of Anhui Province (Grant No.KJ2018A0481)+2 种基金Major Project of Basic Science (Natural Science) Research in Jiangsu Universities (Grant Nos.22KJA460001,23KJA580001)Changzhou Science and Technology Plan Project (Grant No.CE20235049)Changzhou Leading Innovative Talents C ultivation Project (Grant No.CQ20220092).
文摘Two cross⁃sectional configurations of thin⁃walled square tubes partially filled with lightweight metallic foams are proposed,and termed as double⁃cell configuration partially filled with foam(DC⁃PF)and double⁃tube configuration partially filled with foam(DT⁃PF),respectively.The bending crashworthiness is investigated based on three⁃point bending tests using finite element ABAQUS/Explicit code.The two key mechanical indicators including Crash Load Efficiency(CLE)and Specific Energy Absorption(SEA)are introduced to evaluate the effect of foams in comparison with empty square tubes and fully filled square tubes.The numerical results show that the two partially filled configurations,especially DT⁃PF,display dramatically excellent bending crashworthiness compared with empty and fully filled square tubes.There exists a foam density threshold,beyond which the CLE of DT⁃PF achieves a maximum constant.In addition,there seems to be another foam density threshold,beyond which the SEA of DT⁃PF gets to the maximum value.It is also shown that the foam density threshold corresponding to the maximum SEA varies with the thickness of thin⁃walled square tubes.
文摘Early investigations of dielectric permittivity of rigid polyurethane foams at low frequencies were made on petrochemical-origin foams,mainly by means of parallel plate capacitors.In the present investigation biopolyol was synthesized from Latvia-grown rapeseeds’oil by the transesterification method with triethanolamine,in an environmentally friendly process,without emission of harmful substances,at temperatures 175℃±5℃.Rigid,closed-cell rapeseed oil polyol polyurethane biofoams and petrochemical foams were made ensuring content of the renewable rapeseed oil polyol in ready foams 27 wt.%–29 wt.%.Dielectric permittivity of the polyurethane foams and the underlying monolithic petrochemical-origin polyurethane and biopolyurethane was measured with a non-destructive dielectric spectrometer equipped with a capacitive sensor of one-side access type at 16 discrete frequencies distributed geometrically over the band 10 Hz,…,330 kHz.Permittivity value of the gaseous phase in the closed-cells was estimated to beεg≈1.001 that corresponds to the values,characteristic for the most of gases.Dielectric permittivity of petrochemical polyurethane foams and the mentioned biofoams was compared with permittivity of polyurethane foams from industrial producers Sika JSC and General Plastics Manufacturing Co.Polyurethane foams of the developed formulation exhibit competitive,low dielectric permittivity,not exceeding that of the foams from industrial producers:petrochemical foams up to 550 kg/m^(3) and the mentioned biofoams,comprising the renewable rapeseed oil polyol,up to densities 230–250 kg/m^(3).Considering petrochemical-origin polyurethane foams as a heterogeneous media“Polymer—gaseous phase”,the applicability of the rule of mixture and Maxwell–Garnett equation to model mathematically the dependence of effective dielectric permittivity on the volume fraction of phases was showed.
基金Project(2013DFR50330)supported by the International Cooperation Project of Science and Technology Ministry of China
文摘The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and numerically. Foam specimens prepared from conditioned melt were tested under uniaxial compressive loading condition. The cell wall microstructure and fracture were observed through optical microscope(OM) and scanning electron microscope(SEM), which indicates that the cell wall property is impaired by the defects in cell walls and oxide films on the cell wall surface. Subsequently, finite element(FE) models based on three-dimensional thin shell Kelvin tetrakaidecahedron were developed based on the mechanical properties of the raw material and solid material that are determined by using experimental measurements. The simulation results show that the plateau stress of the nominal stress-strain curve exhibits a linear relationship with the yield strength of the cell wall material. The simulation plateau stress is higher than the experimental data, partly owing to the substitution of solid material for cell wall material in the process of the establishment of FE models.
基金Project(51371104)supported by the National Natural Science Foundation of China
文摘Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.
文摘Silicon carbide (SIC) foams with a continuously connected open-cell structure were prepared and characterized for their mechanical performance. The apparent densities of SiC foams were controlled between about 0.4 and 2.3 g/cm^3, with corresponding compressive strengths ranging from about 23 to 60 MPa and flexural strengths from about 8 to 30 MPa. Compressive testing of the SiC foams yielded stress-strain curves with only one linear-elastic region, which is different from those reported on ceramic foams in literature. This can possibly be attributed to the existence of filaments with fine, dense and high strength microstructures. The SiC and the filaments respond homogeneously to applied loading.
基金financially sponsored by the Science and Technology Commission of Shanghai Municipality (20230742300 and 18595800700)Key Laboratory of Resource Chemistry, Ministry of Education (KLRC_ME2103)the project of “joint assignment” in Shanghai University led by Prof. Tongyue Gao from School of Mechatronic Engineering and Automation。
文摘Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.
基金Projects(51072107,51272213,51221001)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities of China("111" Project)
文摘To improve the oxidation resistance of boron-modified carbon foams, the B2O3 coating was prepared on boron-modified carbon foams by low-cost slurry method. The microstructures and phase compositions of the coated carbon foams were characterized by scanning electron microscopy and X-ray diffraction, respectively. Oxidation resistances of uncoated and coated boron-modified carbon foams were investigated at 873 K in air. The results showed that as-received B2O3 coating could protect boron-modified carbon foams from oxidation at 873 K. B2O3-coated carbon foam doped with 7% B2O3 (mass fraction) (BO-7) had better oxidation resistance, exhibiting mass loss of 17.40% after oxidation at 873 K for 120 min. The melting glass layer formed on the surface of BO-7 could prevent oxygen from diffusing into boron-modified carbon foams substrate during oxidation to some extent.
基金the National key R&D projects(Nos.2019YFC1907101,2019YFC1907103,2017YFB0702304)the Key R&D project in Ningxia Hui Autonomous Region(No.2020BCE01001)+5 种基金the National Natural Science Foundation of China(No.51672024)the Xijiang Innovation and Entrepreneurship Team(No.2017A0109004)the Program of China Scholarships Coun-cil(No.201806465040)the Fundamental Research Funds for the Central Universities(Nos.FRF-IC-19-007,FRF-IC-19-017Z,FRF-MP-19-002,FRF-TP-19-003B1,FRF-GF-19-032B,and 06500141)the State Key Laboratory for Ad-vanced Metals and Materials(No.2019Z-05)the Integ-ration of Green Key Process Systems MIIT.
文摘Municipal solid waste incineration products of bottom ash(BA),fly ash(FA),and pickling sludge(PS),causing severe environ-mental pollution,were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering.The effect of the BA/FA mass ratio on the phase composition,pore morphology,pore size distribution,physical properties,and glass structure was investigated,with results showing that with the increase in the BA/FA ratio,the content of the glass phase,Si-O-Si,and Q3Si units decrease gradually.The glass transmission temperature of the mixture was also reduced.When combined,the glass viscosity decreases,causing bubble coalescence and uneven pore distribution.Glass ceramic foams with uniform spherical pores are fabricated.When the content of BA,FA,and PS are 35wt%,45wt%,and 20wt%,respectively,contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3,porosity of 56.01%,and compressive strength exceeding 16.23 MPa.This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174060 and 51301109)the Science and Technology Department of Liaoning Province of China (No. 2013223004)the Fundamental Research Funds for the Central Universities (No. 140203004)
文摘The damping properties of an Mg alloy foam and its composite foams were investigated using a dynamic mechanical thermal analyzer. The results show that the loss factors of both the Mg alloy and its composite foams are insensitive to temperature and loading frequency when the temperature is less than a critical temperature Tcrit. However, it increases when the temperature exceeds the Tcrit values, which are 200 and 250°C for the Mg alloy foam and the Mg alloy/SiCp composite foams, respectively. The Mg alloy/SiCp composite foams exhibit a higher damping capacity than the Mg alloy foam when the temperature is below 200°C. By contrast, the Mg alloy foam exhibits a better damping capacity when the temperature exceeds 250°C. The variation in the damping capacity is attributed to differences in the internal friction sources, such as the characteristics of the matrix material, abundant interfaces, and interfacial slipping caused by SiC particles, as well as to macrodefects in the Mg alloy and its composite foams.
基金supported by the National Natural Science Foundation of China(No.52072301)the State Key Laboratory of Solidification Processing(NPU)(No.2021-TS-08)+3 种基金the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KFZD202102)the China-Poland International Collaboration Fund of National Natural Science Foundation of China(No.51961135301)the Fundamental Research Funds for the Central Universities(No.D5000210722)State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(No.P2020–009)。
文摘The introduction of porous structures into high-entropy ceramics is expected to further improve its thermal insulation performance.In this work,a series of novel rare-earth-niobate high-entropy ceramic foams((Dy_(0.2)Ho_(0.2)Y_(0.2)Er_(0.2)Yb_(0.2))_(3)NbO_(7))with hierarchical pore structures were prepared by a particle-stabilized foaming method.Atomic-scale analysis reveals that high entropy causes atom displacement and lattice distortion.The high-entropy ceramic foams exhibit high porosity(90.13%-96.13%)and ultralow thermal conductivity(0.0343-0.0592 W/(m·K))at room temperature.High-entropy ceramic foam prepared by a 20 wt%slurry sintered at 1500℃has the porosity of 96.12%and extremely low thermal conductivity of 0.0343 W/(m·K).The existence of walls and secondary pores contributes to reduced thermal conductivity.There is a temperature difference of over 800℃between frontside and backside of the sample under fire resistance test.The research indicates that these as-prepared high-entropy ceramic foams are expected to be promising thermal insulation materials.