Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers...Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.展开更多
A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A mult...A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A multi-step predictive model is developed to estimate the seismic performance of high-rise buildings, taking into account of the effects of nonlinearity, time-variability, model mismatching, and disturbances and uncertainty of controlled system parameters by the predicted error feedback in the multi-step predictive model. Based on the predictive model, a Kalman-Bucy observer suitable for semi-active strategy is proposed to estimate the state vector from the acceleration and semi-active control force feedback. The main advantage of the proposed strategy is its inherent stability, simplicity, on-line real-time operation, and the ability to handle nonlinearity, uncertainty, and time-variability properties of structures. Numerical simulation of the nonlinear seismic responses of a controlled 20-story benchmark building is carried out, and the simulation results are compared to those of other control systems. The results show that the developed semi-active strategy can efficiently reduce the nonlinear seismic response of high-rise buildings.展开更多
Starting the engine and quickly adjusting the engine speed to the target value after that will always be a challenge for vehicles with an internal combustion engines at development sites in the automotive industry.The...Starting the engine and quickly adjusting the engine speed to the target value after that will always be a challenge for vehicles with an internal combustion engines at development sites in the automotive industry.The SICE Research Committee on Advanced Powertrain Control Theory provided this task as a benchmark problem with the engine model.Just as control developers in the industry are provided actual engines,many of the academic experts have acquired engine models,analyzed behavior and constructed controls,and solved control tasks.We summarize this activity by explaining the methods by many challengers that achieved the target performance.展开更多
This paper proposes an energy management strategy for the benchmark problem of E-COSM 2021 to improve the energy efficiency of hybrid electric vehicles(HEVs)on a road with a slope.We assume that HEVs are in a connecte...This paper proposes an energy management strategy for the benchmark problem of E-COSM 2021 to improve the energy efficiency of hybrid electric vehicles(HEVs)on a road with a slope.We assume that HEVs are in a connected environment with real-time vehicle-to-everything information,including geographic information,vehicle-to-infrastructure information and vehicle-to-vehicle information.The benchmark problem to be solved is based on HEV powertrain control using traffic information to achieve fuel economy improvements while satisfying the constraints of driving safety and travel time.The proposed strategy includes multiple rules and model predictive control(MPC).The rules of this strategy are designed based on external environment information to maintain safe driving and to determine the driving mode.To improve fuel economy,the optimal energy management strategy is primarily considered,and to perform real-time energy management via RHC-based optimization in a connected environment with safety constraints,a key issue is to predict the dynamics of the preceding vehicle during the targeted horizon.Therefore,this paper presents a real-time model-based optimization strategy with learning-based prediction of the vehicle’s future speed.To validate the proposed optimization strategy,a powertrain control simulation platform in a traffic-in-the-loop environment is constructed,and case study results performed on the constructed platform are reported and discussed.展开更多
An improved Guo Tao algorithm (IGT algorithm) is proposed for solving complicated dynamic function optimization problems, and a function optimization benchmark problem with constrained condition and two dynamic para...An improved Guo Tao algorithm (IGT algorithm) is proposed for solving complicated dynamic function optimization problems, and a function optimization benchmark problem with constrained condition and two dynamic parameters has been designed. The results achieved by IGT algorithm have been compared with the results from the Guo Tao algorithm (GT algorithm). It is shown that the new algorithm (IGT algorithm) provides better results. This preliminarily demonstrates the efficiency of the new algorithm in complicated dynamic environments.展开更多
This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optima...This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm.展开更多
文摘Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.
基金Fujian Province Youth Foundation for InnovativResearch Under Grant No. 2006F3008Fujian ProvincEducational Special Foundation Under Grant No. JA06027
文摘A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A multi-step predictive model is developed to estimate the seismic performance of high-rise buildings, taking into account of the effects of nonlinearity, time-variability, model mismatching, and disturbances and uncertainty of controlled system parameters by the predicted error feedback in the multi-step predictive model. Based on the predictive model, a Kalman-Bucy observer suitable for semi-active strategy is proposed to estimate the state vector from the acceleration and semi-active control force feedback. The main advantage of the proposed strategy is its inherent stability, simplicity, on-line real-time operation, and the ability to handle nonlinearity, uncertainty, and time-variability properties of structures. Numerical simulation of the nonlinear seismic responses of a controlled 20-story benchmark building is carried out, and the simulation results are compared to those of other control systems. The results show that the developed semi-active strategy can efficiently reduce the nonlinear seismic response of high-rise buildings.
文摘Starting the engine and quickly adjusting the engine speed to the target value after that will always be a challenge for vehicles with an internal combustion engines at development sites in the automotive industry.The SICE Research Committee on Advanced Powertrain Control Theory provided this task as a benchmark problem with the engine model.Just as control developers in the industry are provided actual engines,many of the academic experts have acquired engine models,analyzed behavior and constructed controls,and solved control tasks.We summarize this activity by explaining the methods by many challengers that achieved the target performance.
基金supported by the National Natural Science Foundation of China(No.61973053).The authors would like to thank the Toyota Motor Corporation for the technical support on this research work..
文摘This paper proposes an energy management strategy for the benchmark problem of E-COSM 2021 to improve the energy efficiency of hybrid electric vehicles(HEVs)on a road with a slope.We assume that HEVs are in a connected environment with real-time vehicle-to-everything information,including geographic information,vehicle-to-infrastructure information and vehicle-to-vehicle information.The benchmark problem to be solved is based on HEV powertrain control using traffic information to achieve fuel economy improvements while satisfying the constraints of driving safety and travel time.The proposed strategy includes multiple rules and model predictive control(MPC).The rules of this strategy are designed based on external environment information to maintain safe driving and to determine the driving mode.To improve fuel economy,the optimal energy management strategy is primarily considered,and to perform real-time energy management via RHC-based optimization in a connected environment with safety constraints,a key issue is to predict the dynamics of the preceding vehicle during the targeted horizon.Therefore,this paper presents a real-time model-based optimization strategy with learning-based prediction of the vehicle’s future speed.To validate the proposed optimization strategy,a powertrain control simulation platform in a traffic-in-the-loop environment is constructed,and case study results performed on the constructed platform are reported and discussed.
基金Supported by the National Natural Science Foundation of China(60473081,60133010)
文摘An improved Guo Tao algorithm (IGT algorithm) is proposed for solving complicated dynamic function optimization problems, and a function optimization benchmark problem with constrained condition and two dynamic parameters has been designed. The results achieved by IGT algorithm have been compared with the results from the Guo Tao algorithm (GT algorithm). It is shown that the new algorithm (IGT algorithm) provides better results. This preliminarily demonstrates the efficiency of the new algorithm in complicated dynamic environments.
基金King Saud University for funding this research through Researchers Supporting Program Number(RSPD2023R704),King Saud University,Riyadh,Saudi Arabia.
文摘This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm.