Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work ...Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.展开更多
The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple ta...The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple targets and separating their vital sign signals remains a challenging research topic. This paper proposes a scene-differentiated method for multi-target localization and vital sign monitoring. The approach identifies the relative positions of multiple targets using Range FFT and determines the directions of targets via the multiple signal classification (MUSIC) algorithm. Phase signals within the range bins corresponding to the targets are separated using bandpass filtering. If multiple targets reside in the same range bin, the variational mode decomposition (VMD) algorithm is employed to decompose their breathing or heartbeat signals. Experimental results demonstrate that the proposed method accurately localizes targets. When multiple targets occupy the same range bin, the mean absolute error (MAE) for respiratory signals is 3 bpm, and the MAE for heartbeat signals is 5 bpm.展开更多
文摘Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.
文摘The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple targets and separating their vital sign signals remains a challenging research topic. This paper proposes a scene-differentiated method for multi-target localization and vital sign monitoring. The approach identifies the relative positions of multiple targets using Range FFT and determines the directions of targets via the multiple signal classification (MUSIC) algorithm. Phase signals within the range bins corresponding to the targets are separated using bandpass filtering. If multiple targets reside in the same range bin, the variational mode decomposition (VMD) algorithm is employed to decompose their breathing or heartbeat signals. Experimental results demonstrate that the proposed method accurately localizes targets. When multiple targets occupy the same range bin, the mean absolute error (MAE) for respiratory signals is 3 bpm, and the MAE for heartbeat signals is 5 bpm.