The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced elec...The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced electric machines with complex structures are mandatory to confirm their reliability and safe operation.In a unique axial transverse flux switching permanent magnet(ATFSPM)generator,due to its high power density,large stray loss from leakage flux,compact topology,and totally enclosed structure,thermal analysis is of paramount significance.In this paper,thermal modeling and analysis of ATFSPM are carried out in detail using a three-dimensional(3D)finite element analysis(FEA)to evaluate the thermal condition for a precise performance improvement.To begin,all loss sources are accurately derived using 3-D FEA and analytical methods,taking into account the temperature dependence of material properties,and then losses are coupled to the thermal model as heat sources.Afterward,aiming for realistic thermal modelling,the convection heat transfer in the different regions of internal and external areas as well as thin layers of interface gaps between components are all considered.In addition,the prototype of ATFSPM is supplied to validate the accuracy of 3-D FEA temperature prediction.Furthermore,a novel technique is carried out to effectively improve thermal performance,enhance the efficiency,and limit hot-spot temperatures.The steady-state and transient temperature results demonstrate the high accuracy of the thermal modeling,enhance the secure operation of the ATFSPM,and facilitate increased loading utilizing the proposed technique.(1)展开更多
The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European b...The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European beech forests require further investigation to understand how climate change will affect these ecosystems in Mediterranean areas.Proposed silvicultural options increasingly aim at sustainable management to reduce biotic and abiotic stresses and enhance these forest ecosystems'resistance and resilience mechanisms.Process-based models(PBMs)can help us to simulate such phenomena and capture early stress signals while considering the effect of different management approaches.In this study,we focus on estimating sensitivity of two state-of-the-art PBMs forest models by simulating carbon and water fluxes at the stand level to assess productivity changes and feedback resulting from different climatic forcings as well as different management regimes.We applied the 3D-CMCC-FEM and MEDFATE forest models for carbon(C)and water(H_(2)O)fluxes in two sites of the Italian peninsula,Cansiglio in the north and Mongiana in the south,under managed vs.unmanaged scenarios and under current climate and different climatic scenarios(RCP4.5 and RCP8.5).To ensure confidence in the models’results,we preliminary evaluated their performance in simulating C and H_(2)O flux in three additional beech forests of the FLUXNET network along a latitudinal gradient spanning from Denmark to central Italy.The 3D-CMCC-FEM model achieved R^(2)values of 0.83 and 0.86 with RMSEs of 2.53 and 2.05 for C and H_(2)O fluxes,respectively.MEDFATE showed R^(2)values of 0.76 and 0.69 with RMSEs of 2.54 and 3.01.At the Cansiglio site in northern Italy,both models simulated a general increase in C and H_(2)O fluxes under the RCP8.5 climate scenario compared to the current climate.Still,no benefit in managed plots compared to unmanaged ones,as the site does not have water availability limitations,and thus,competition for water is low.At the Mongiana site in southern Italy,both models predict a decrease in C and H_(2)O fluxes and sensitivity to the different climatic forcing compared to the current climate;and an increase in C and H_(2)O fluxes when considering specific management regimes compared to unmanaged scenarios.Conversely,under unmanaged scenarios plots are simulated to experience first signals of mortality prematurely due to water stress(MEDFATE)and carbon starvation(3D-CMCC-FEM)scenarios.In conclusion,while management interventions may be considered a viable solution for the conservation of beech forests under future climate conditions at moister sites like Cansiglio,in drier sites like Mongiana conservation may not lie in management interventions alone.展开更多
Understanding the characteristics and variations of heat exchange and evaporation of lakes is important for regional water resource management and sustainable development.Based on eddy covariance measurements over Lak...Understanding the characteristics and variations of heat exchange and evaporation of lakes is important for regional water resource management and sustainable development.Based on eddy covariance measurements over Lake Vanajavesi in southern Finland,characteristics of energy fluxes and cold frontal effects on energy exchange were investigated.The lake acted as a heat sink in spring and summer and a heat source in winter.The latent heat flux reached its minimum value in the morning and peaked in the afternoon.The diurnal variation of sensible heat flux was opposite to that of latent heat flux.Impact factors for the sensible heat flux were mainly the lake-air temperature difference and the product of lake-air temperature difference and wind speed.The latent heat flux was mainly affected by the vapor pressure deficit and the product of vapor pressure deficit and wind speed.The annual mean values of bulk transfer coefficients for momentum,heat,and water vapor were 1.98×10^(-3),1.62×10^(-3),and 1.31×10^(-3),respectively.Bulk transfer coefficients for heat and water vapor were not equal,indicating that the parameterization of energy exchange in numerical models,where the assumption that the heat coefficient equals the water vapor coefficient needs improvement.During the ice-free season,cold fronts resulted in 28 sensible heat pulses and 17 latent heat pulses,contributing to 50.59%and 34.89%of sensible and latent heat exchange in Lake Vanajavesi.These results indicate that cold fronts significantly impact the surface energy budget and evaporation over lakes.展开更多
Ramsey oscillations typically exhibit an exponential decay envelope due to environmental noise. However,recent experiments have observed nonmonotonic Ramsey fringes characterized by beating patterns, which deviate fro...Ramsey oscillations typically exhibit an exponential decay envelope due to environmental noise. However,recent experiments have observed nonmonotonic Ramsey fringes characterized by beating patterns, which deviate from the standard behavior. These beating patterns have primarily been attributed to charge-noise fluctuations.In this paper, we have experimentally observed Ramsey fringe with beating pattern for transmon qubits, and traced the origin to electric instruments induced flux noise.展开更多
The noise feature of a single-mode class-A laser amplifier is investigated by solving the Maxwell–Bloch equations of motion in the presence of the fluctuation force of cavity Langevin.The aim is to calculate the simu...The noise feature of a single-mode class-A laser amplifier is investigated by solving the Maxwell–Bloch equations of motion in the presence of the fluctuation force of cavity Langevin.The aim is to calculate the simultaneous fluctuations that are superimposed on the amplitude and phase of the cavity electric field, as well as the atomic population inversion. The correlation function of these fluctuations yields the amplitude, phase, and spontaneous emission noise fluxes, respectively. The amplitude and spontaneous emission noise fluxes exhibit the Lorentzian profiles in both the below-threshold state and the injection-locking region of the above-threshold state. While noise is typically viewed negatively in science and engineering, this research highlights its positive role as a valuable tool for measuring the optical properties of a laser amplifier. For instance, the degree of first-order temporal coherence(DFOTC) is derived by taking the Fourier transform of the amplitude noise flux. The damping rate of DFOTC is associated with the coherence time of the light emitted by the laser amplifier. Furthermore, the uncertainty relation between noise bandwidth and coherence time is confirmed. Finally, it is demonstrated that the input pumping noise flux, together with the output amplitude and spontaneous emission noise fluxes, satisfy the principle of flux conservation.展开更多
Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must m...Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.展开更多
Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increase...Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increased when the initial aluminum content increased from 0.76 to 3.85 wt.%.Utilizing the two-film theory,a steel–flux reaction kinetic model controlled by mass transfer was established,which considered the influence of the initial composition on the density of liquid steel and flux.The mass transfer of aluminum in the steel phase was the reaction rate-determining step.It was confirmed that the mass transfer coefficient of Al was 1.87×10^(−4).The predicted results of the kinetic model were consistent and reliable with the experimental results.Thermodynamic equilibrium calculation was performed using FactSage 8.2,which was compared with the steel and flux final composition after 30 min.The content of initial aluminum in the liquid steel played a critical role in the SiO_(2)equilibrium content of the mold flux.In addition,the steel–flux reaction between[Al]and(SiO_(2))occurred with the initial SiO_(2)content in the mold flux lower than 3 wt.%.展开更多
Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess ...Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess and understand the spatial distribution of LE and SH fluxes across different underlying surfaces,it is crucial to verify the validity and reliability of ERA-5,GLDAS,and MODIS data against ground measurements obtained from the Flux Net micrometeorological tower network.This study analyzed the spatial patterns of LE and SH over the Tibetan Plateau using data from ERA-5,GLDAS,and MODIS.The results were compared with ground measurements from Flux Net tower observations on different underlying surfaces,and five statistical parameters(Pearson's r,LR slope,RMSE,MBE,and MAE)were used to validate the data.The results showed that:(1)MODIS LE data and ERA-5 SH data exhibited the closest agreement with ground observations,as indicated by their lowest root mean square error and mean bias area values.(2)The accuracy of ERA-5 SH was the highest in meadows and steppes,while GLDAS SH performed optimally in shrublands.Notably,MODIS LE consistently outperformed the other datasets across all vegetation types.(3)The spatial distribution of LE and SH displayed considerable heterogeneity,contingent upon the specific data sources and underlying surfaces.Notably,there was a contrasting trend between GLDAS and ERA-5,as well as MODIS,in terms of SH distribution in the shrubland.In shrublands and meadows,MODIS SH and LE exhibited more pronounced changes than ERA-5 and GLDAS.Additionally,ERA-5 SH demonstrated the opposite variation in meadow and steppe regions compared to GLDAS and MODIS.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
This study investigates the inward flux events following sawtooth crashes in the edge of HL-2A neutral beam heated plasmas.We identified three distinct types of inward fluxes with varying magnitudes and durations,each...This study investigates the inward flux events following sawtooth crashes in the edge of HL-2A neutral beam heated plasmas.We identified three distinct types of inward fluxes with varying magnitudes and durations,each associated with unique plasma parameter fluctuations.Magnetic fluctuations,particularly the disruption of magnetic surface structures caused by sawtooth crashes,may play a significant role in modulating plasma dynamics.Moreover,the crossphase term and coherence between density and velocity fluctuations were found to be key factors in these flux events,with high coherence correlating with peak inward flux.These findings enhance the understanding of fluctuation-induced transport after sawtooth crashes and have implications for plasma confinement in fusion devices.展开更多
Peng et al.in[Phys.Rev.Research,2020,2(3):033089,11 pp.]formulated one-way fluxes for a general chemical reaction far from equilibrium,with arbitrary complex mechanisms,multiple intermediates,and internal kinetic cycl...Peng et al.in[Phys.Rev.Research,2020,2(3):033089,11 pp.]formulated one-way fluxes for a general chemical reaction far from equilibrium,with arbitrary complex mechanisms,multiple intermediates,and internal kinetic cycles.They defined the limit of the ratio of mesoscopic one-way fluxes and the volume of the tank reactor when the volume tends to infinity as macroscopic one-way fluxes,but a rigorous proof of existence of the limit is still awaiting.In this article,we fill this gap under a mild hypothesis:the Markov chain associated with the chemical master equation has finite states and any two columns in the stoichiometric matrices are not identical.In fact,an explicit expression of the limit is obtained.展开更多
Extraterrestrial phenomena have influenced Earth’s processes throughout geological history.Evaluating the impact of extraterrestrial material on the environment is crucial for understanding the evolution of Earth and...Extraterrestrial phenomena have influenced Earth’s processes throughout geological history.Evaluating the impact of extraterrestrial material on the environment is crucial for understanding the evolution of Earth and life.This study incorporates the investigation of micrometeorites(MMs),abundant cosmic materials on Earth,to understand their influence on the chemical composition and biogeochemistry of the ocean.Comprehensive etching and flux analyses reveal that∼95%of cosmic spherules(CSs)entering seawater are etched or wholly dissolved,supplying nutrients to phytoplankton.Barred spherules show the highest degree of etching(∼19%),followed by porphyritic(∼17%),glass(∼15%),cryptocrystalline(∼12%),scoriaceous(∼10%),G-type(∼9%),and I-type(∼6%).Annually,∼3080 tonnes(t)of olivine from MMs dissolve into seawater,contributing∼495 t of Mg^(2+),∼1110 t of Fe^(2+),and∼1928 t of silicic acid.This signifies that over the Indian Ocean’s∼40 Myr history,∼23 Gt of olivine from CSs has dissolved,providing nutrients to seawater and sequestering∼7 Gt of CO_(2).The world ocean during this time has sequestered∼35 Gt of CO_(2),with fluctuations influenced by extraterrestrial activity.For instance,the Veritas event,lasting∼1.5 Myr,sequestered∼6 Gt of CO_(2)from the atmosphere.A robust flux calculation based on∼2 t of deep-sea sediments from 3610 MMs provides a more accurate estimate of the time-averaged flux of∼229 t yr^(−1).These comprehensive analyses reveal MM’s original characteristics,post-deposition processes,geological record and their overall impact on Earth’s marine environments,thereby contributing to our knowledge of the interconnection between terrestrial and extraterrestrial processes.展开更多
The influence of refining flux composition,refining time,refining temperature,and addition amount on the microstructure and mechanical properties of Mg-9Li-3Al-1Zn alloy was investigated with orthogonal experimental d...The influence of refining flux composition,refining time,refining temperature,and addition amount on the microstructure and mechanical properties of Mg-9Li-3Al-1Zn alloy was investigated with orthogonal experimental design.The flux purification process for Mg-Li alloys was optimized and the most effective ternary flux composition was identified.Results indicate that flux purification significantly mitigates Li loss during smelting by forming a protective surface layer that reduces Li oxidation and evaporation.The optimal flux composition is LiCl:LiF:CaF_(2)in a 3:1:2 mass ratio,with a flux addition of 3%,refining temperature of 720°C,and holding time of 10 min.The elongation of alloy improves to 16.2% after refinement,while the enhancement in strength remains marginal.展开更多
The North China Plain(NCP)frequently experiences ozone pollution events,which are generally related to cross-border transport at multiple scales.However,current methods of calculating ozone transport are insufficient ...The North China Plain(NCP)frequently experiences ozone pollution events,which are generally related to cross-border transport at multiple scales.However,current methods of calculating ozone transport are insufficient to account for ozone transport at different altitudes.To further understand the characteristics of ozone transport,we applied theWeather Research and Forecasting(WRF)model and the Comprehensive Air Quality Model with Extensions(CAMx)based on flux calculation method.The results showed that the simulated flux calculation method was suitable for revealing the evolutionary trend of ozone fluxes.Monthly inflows,outflows,and total net fluxes ranged from-32985.45 to 37361.46 t/d and indicated strong transport and significant spatial and temporal variations of ozone in the urban boundary segments.Vertical distribution analysis of the net ozone fluxes demonstrated that the net fluxes varied with the altitude,and the altitude at which the corresponding peaks were located had a strong correlation with the neighborhood and season.It was noteworthy that there were three main transport directions throughout the year,namely northwest-southeast(NW-SE),southeast-northwest(SE-NW),and southwestnortheast(SW-NE).Additionally,the ozone flux was mainly affected by temperature,wind speed,and ozone concentration,with the correlation coefficient varying by season and altitude,up to 0.78.Moreover,the correlation analysis of ozone flux and wind direction in each city further verified the accuracy of the transport direction.This paper can provide scientific and technological support for the study of ozone generation mechanisms and the solution of urban/interregional ozone pollution problems.展开更多
This study achieves a notable enhancement in the thermoelectric performance of copper selenide compounds exhibiting liquid-like characteristics via an innovative processing method.A KCl flux-assisted high-temperature ...This study achieves a notable enhancement in the thermoelectric performance of copper selenide compounds exhibiting liquid-like characteristics via an innovative processing method.A KCl flux-assisted high-temperature melting and slow-cooling strategy was employed to fabricate nanolayered Cu_(2)Se(KCl)_(x)materials(x=0-3,denoted as S_(0)-S_(3)).Systematic characterization reveals that the coexistence ofαandβphases at room temperature creates favorable conditions for optimizing carrier transport.XPS analysis confirms the substitution of low-binding-energy Se_(2)-by high-binding-energy Cl^(-)ions within the lattice,effectively suppressing copper ion migration and remarkably improving the material's structural stability.Microstructural investigations demonstrate that all samples exhibit nanolayered stacking architectures abundant with edge dislocations.This multiscale defect architecture induces strong phonon scattering effects.Hall measurements indicate that the KCl flux-assisted processing facilitates the formation of highly ordered nanostructures,thereby enhancing carrier mobility and structural stability.Although the carrier concentration exhibits a slight decrease compared with the flux-free samples,the significant improvement in microstructural quality plays a crucial role in the synergistic optimization of electrical conductivity and the Seebeck coefficient.Notably,sample S_(2)exhibited a considerable electrical conductivity,reaching approximately 1.0×10^(5)S·m^(-1)at 300 K.More strikingly,the cooperative effect of high-density edge dislocations and dopant atoms elevates material entropy,enabling sample S_(3)to attain an ultralow lattice thermal conductivity of 0.55 W·m^(-1)·K^(-1)at 350 K.Through multi-mechanism coordination,sample S_(2)achieved a high ZT value of 1.45 at 700 K,representing a 2.7-fold improvement compared with traditional synthesis methods.This work provides new insights into performance optimization of liquid-like thermoelectric materials through defect engineering and entropy manipulation.展开更多
Continental crust is the long-term achievements of Earth's evolution across billions of years.The continental rocks could have been modified by various types of geological processes,such as metamorphism,weathering...Continental crust is the long-term achievements of Earth's evolution across billions of years.The continental rocks could have been modified by various types of geological processes,such as metamorphism,weathering,and reworking.Therefore,physical or chemical properties of rocks through time record the composite effects of geological,biological,hydrological,and climatological processes.Temporal variations in these time series datasets could provide important clues for understanding the co-evolution of different layers on Earth.However,deciphering Earth's evolution in deep time is challenged by incompleteness,singularity,and intermittence of geological records associated with extreme geological events,hindering a rigorous assessment of the underlying coupling mechanisms.Here,we applied the recently developed local singularity analysis and wavelet analysis method to deep-time U-Pb age spectra and sedimentary abundance record across the past 3.5 Gyrs.Standard cross-correlation analysis suggests that the singularity records of marine sediment accumulations and magmatism intensity at continental margin are correlated negatively(R^(2)=0.8),with a delay of~100 Myr.Specifically,wavelet coherence analysis suggests a~500-800 Myr cycle of correlation between two records,implying a coupling between the major downward processes(subduction and recycling sediments)and upward processes(magmatic events)related to the aggregation and segregation of supercontinents.The results clearly reveal the long-term cyclic feedback mechanism between sediment accumulation and magmatism intensity through aggregation of supercontinents.展开更多
Air-sea water vapor and CO_(2) flux observation experiments were carried out at the Yantai National Satellite Ocean Calibration Platform and the jetty at Monolithic Beach,Juehua Island,using a 100 Hz gas analyzer.The ...Air-sea water vapor and CO_(2) flux observation experiments were carried out at the Yantai National Satellite Ocean Calibration Platform and the jetty at Monolithic Beach,Juehua Island,using a 100 Hz gas analyzer.The observations were corrected by employing wild point rejection,linear detrending,delay correction,coordinate rotation,time matching,and Webb,Pearman,and Leuning(WPL)correction.The results of spectral analysis and a turbulence development adequacy data quality check showed that the overall observation data quality was good.The air-sea water vapor and CO_(2) flux results showed that the observation duration affected both the air-sea flux intensity and direction at different observation frequencies.At shorter observation durations,the air-sea flux values measured at 100 Hz were smaller than the 20 Hz measurements and had opposite directions.In addition,the WPL correction reduced the overall air-sea flux and partially minimized the effect of observation frequency on the air-sea flux intensity.These results showed that high-frequency observations showed more turbulence variations than low-frequency observations.This conclusion could promote an understanding of small-scale turbulence variations.展开更多
We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Cons...We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Consequently,we identify the super-vortical lattice,as well as the inner-Meissner phase,which presents Meissner currents just along the intimal legs within the flux ladder.The staggered-current phase is also allowed,with its formation condition altered because of the four-leg construction.The number of legs on the flux ladder can make an effect.展开更多
The divertor design is critical to heat load handling and thus to achievements of highperformance plasma operations in the EHL-2(ENN He-Long 2)tokamak.This paper presents the design of an X-point target(XPT)divertor,f...The divertor design is critical to heat load handling and thus to achievements of highperformance plasma operations in the EHL-2(ENN He-Long 2)tokamak.This paper presents the design of an X-point target(XPT)divertor,featuring a conventional inner divertor and an XPT outer divertor,aimed at the effective control of heat loads,which may be extremely high during high ion temperature scenarios.The divertor target plates are made from carbon-based materials,which can handle heat loads of up to 5 MW/m².Divertor performances,including the heat load controllability,the onset of detachment and the in-out/up-down asymmetry,etc.,are evaluated using both the simple particle-tracking strategy and the complicated SOLPS-ITER code.Special attention is paid to the drift effects on particle/heat transport in the divertor/scrape-off layer region and on the divertor heat loads,focusing on the semi-detached/detached operation regimes.Results from SOLPS-ITER simulations demonstrated that the currently designed magnetic equilibrium and divertor configuration can effectively handle the power heat load in EHL-2.展开更多
基金supported by research grants of the Iran National Science Foundation(INSF)under grant No.98002866。
文摘The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced electric machines with complex structures are mandatory to confirm their reliability and safe operation.In a unique axial transverse flux switching permanent magnet(ATFSPM)generator,due to its high power density,large stray loss from leakage flux,compact topology,and totally enclosed structure,thermal analysis is of paramount significance.In this paper,thermal modeling and analysis of ATFSPM are carried out in detail using a three-dimensional(3D)finite element analysis(FEA)to evaluate the thermal condition for a precise performance improvement.To begin,all loss sources are accurately derived using 3-D FEA and analytical methods,taking into account the temperature dependence of material properties,and then losses are coupled to the thermal model as heat sources.Afterward,aiming for realistic thermal modelling,the convection heat transfer in the different regions of internal and external areas as well as thin layers of interface gaps between components are all considered.In addition,the prototype of ATFSPM is supplied to validate the accuracy of 3-D FEA temperature prediction.Furthermore,a novel technique is carried out to effectively improve thermal performance,enhance the efficiency,and limit hot-spot temperatures.The steady-state and transient temperature results demonstrate the high accuracy of the thermal modeling,enhance the secure operation of the ATFSPM,and facilitate increased loading utilizing the proposed technique.(1)
基金the Institute Research Centre for Ecological and Forestry Applications (CREAF) of Barcelona that supported the research by the Spanish “Ministerio de Ciencia e Innovacio'n”(MCIN/AEI/ 10.13039/501100011033) (grant agreement No. PID 2021-126679OBI00)partially supported by MIUR Project (PRIN 2020) between WATER and carbon cycles during droug“Unraveling interactionsht and their impact on water resources and forest and grassland ecosySTEMs in the Mediterranean climate (WATERSTEM)”(Project number: 20202WF53Z),“WAFER”at CNR (Consiglio Nazionale delle Ricerche)+3 种基金Priwitzer et al. (2014) (cod. 2020E52THS)-Research Projects of National Relevance funded by the Italian Ministry of University and Research entitled: “Multi-scale observations to predict Forest response to pollution and climate change”(MULTIFOR, project number: 2020E52THS)funding by the project OptForEU Horizon Europe research and innovation programme under grant agreement No. 101060554the project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4-Call for tender No. 3138 of December 16, 2021, rectified by Decree n.3175 of December 18, 2021 of Italian Ministry of UniversityResearch funded by the European UnionationEU under award Number: Project code CN_00000033–Next Gener, Concession Decree No. 1034 of June 17, 2022 adopted by the Italian Ministry of University and Research, CUP B83C22002930006, Project title“National Biodiversity Future Centre-NBFC”
文摘The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European beech forests require further investigation to understand how climate change will affect these ecosystems in Mediterranean areas.Proposed silvicultural options increasingly aim at sustainable management to reduce biotic and abiotic stresses and enhance these forest ecosystems'resistance and resilience mechanisms.Process-based models(PBMs)can help us to simulate such phenomena and capture early stress signals while considering the effect of different management approaches.In this study,we focus on estimating sensitivity of two state-of-the-art PBMs forest models by simulating carbon and water fluxes at the stand level to assess productivity changes and feedback resulting from different climatic forcings as well as different management regimes.We applied the 3D-CMCC-FEM and MEDFATE forest models for carbon(C)and water(H_(2)O)fluxes in two sites of the Italian peninsula,Cansiglio in the north and Mongiana in the south,under managed vs.unmanaged scenarios and under current climate and different climatic scenarios(RCP4.5 and RCP8.5).To ensure confidence in the models’results,we preliminary evaluated their performance in simulating C and H_(2)O flux in three additional beech forests of the FLUXNET network along a latitudinal gradient spanning from Denmark to central Italy.The 3D-CMCC-FEM model achieved R^(2)values of 0.83 and 0.86 with RMSEs of 2.53 and 2.05 for C and H_(2)O fluxes,respectively.MEDFATE showed R^(2)values of 0.76 and 0.69 with RMSEs of 2.54 and 3.01.At the Cansiglio site in northern Italy,both models simulated a general increase in C and H_(2)O fluxes under the RCP8.5 climate scenario compared to the current climate.Still,no benefit in managed plots compared to unmanaged ones,as the site does not have water availability limitations,and thus,competition for water is low.At the Mongiana site in southern Italy,both models predict a decrease in C and H_(2)O fluxes and sensitivity to the different climatic forcing compared to the current climate;and an increase in C and H_(2)O fluxes when considering specific management regimes compared to unmanaged scenarios.Conversely,under unmanaged scenarios plots are simulated to experience first signals of mortality prematurely due to water stress(MEDFATE)and carbon starvation(3D-CMCC-FEM)scenarios.In conclusion,while management interventions may be considered a viable solution for the conservation of beech forests under future climate conditions at moister sites like Cansiglio,in drier sites like Mongiana conservation may not lie in management interventions alone.
基金supported by funds from the National Natural Science Foundation of China(Grant Nos:42275079,41975017,42411530052,and 42161144010)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0105)。
文摘Understanding the characteristics and variations of heat exchange and evaporation of lakes is important for regional water resource management and sustainable development.Based on eddy covariance measurements over Lake Vanajavesi in southern Finland,characteristics of energy fluxes and cold frontal effects on energy exchange were investigated.The lake acted as a heat sink in spring and summer and a heat source in winter.The latent heat flux reached its minimum value in the morning and peaked in the afternoon.The diurnal variation of sensible heat flux was opposite to that of latent heat flux.Impact factors for the sensible heat flux were mainly the lake-air temperature difference and the product of lake-air temperature difference and wind speed.The latent heat flux was mainly affected by the vapor pressure deficit and the product of vapor pressure deficit and wind speed.The annual mean values of bulk transfer coefficients for momentum,heat,and water vapor were 1.98×10^(-3),1.62×10^(-3),and 1.31×10^(-3),respectively.Bulk transfer coefficients for heat and water vapor were not equal,indicating that the parameterization of energy exchange in numerical models,where the assumption that the heat coefficient equals the water vapor coefficient needs improvement.During the ice-free season,cold fronts resulted in 28 sensible heat pulses and 17 latent heat pulses,contributing to 50.59%and 34.89%of sensible and latent heat exchange in Lake Vanajavesi.These results indicate that cold fronts significantly impact the surface energy budget and evaporation over lakes.
文摘Ramsey oscillations typically exhibit an exponential decay envelope due to environmental noise. However,recent experiments have observed nonmonotonic Ramsey fringes characterized by beating patterns, which deviate from the standard behavior. These beating patterns have primarily been attributed to charge-noise fluctuations.In this paper, we have experimentally observed Ramsey fringe with beating pattern for transmon qubits, and traced the origin to electric instruments induced flux noise.
文摘The noise feature of a single-mode class-A laser amplifier is investigated by solving the Maxwell–Bloch equations of motion in the presence of the fluctuation force of cavity Langevin.The aim is to calculate the simultaneous fluctuations that are superimposed on the amplitude and phase of the cavity electric field, as well as the atomic population inversion. The correlation function of these fluctuations yields the amplitude, phase, and spontaneous emission noise fluxes, respectively. The amplitude and spontaneous emission noise fluxes exhibit the Lorentzian profiles in both the below-threshold state and the injection-locking region of the above-threshold state. While noise is typically viewed negatively in science and engineering, this research highlights its positive role as a valuable tool for measuring the optical properties of a laser amplifier. For instance, the degree of first-order temporal coherence(DFOTC) is derived by taking the Fourier transform of the amplitude noise flux. The damping rate of DFOTC is associated with the coherence time of the light emitted by the laser amplifier. Furthermore, the uncertainty relation between noise bandwidth and coherence time is confirmed. Finally, it is demonstrated that the input pumping noise flux, together with the output amplitude and spontaneous emission noise fluxes, satisfy the principle of flux conservation.
基金supported by National Natural Science Foundation of China(No.12105067)the ITER Organization and China Domestic Agency for the support of this work(No.ITER5.5.P01.CN.05)。
文摘Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.
基金support from the National Key R&D Program of China(No.2023YFB3709900)the National Natural Science Foundation of China(Grant No.U22A20171).
文摘Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increased when the initial aluminum content increased from 0.76 to 3.85 wt.%.Utilizing the two-film theory,a steel–flux reaction kinetic model controlled by mass transfer was established,which considered the influence of the initial composition on the density of liquid steel and flux.The mass transfer of aluminum in the steel phase was the reaction rate-determining step.It was confirmed that the mass transfer coefficient of Al was 1.87×10^(−4).The predicted results of the kinetic model were consistent and reliable with the experimental results.Thermodynamic equilibrium calculation was performed using FactSage 8.2,which was compared with the steel and flux final composition after 30 min.The content of initial aluminum in the liquid steel played a critical role in the SiO_(2)equilibrium content of the mold flux.In addition,the steel–flux reaction between[Al]and(SiO_(2))occurred with the initial SiO_(2)content in the mold flux lower than 3 wt.%.
基金funded by the West Light Scholar of the Chinese Academy of Sciences(xbzg-zdsys-202202)the Natural Science Foundation of Henan(Grant No.232300420165)Integrated Scientific Investigation of the North-South Transitional Zone of China(2017FY100900)。
文摘Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess and understand the spatial distribution of LE and SH fluxes across different underlying surfaces,it is crucial to verify the validity and reliability of ERA-5,GLDAS,and MODIS data against ground measurements obtained from the Flux Net micrometeorological tower network.This study analyzed the spatial patterns of LE and SH over the Tibetan Plateau using data from ERA-5,GLDAS,and MODIS.The results were compared with ground measurements from Flux Net tower observations on different underlying surfaces,and five statistical parameters(Pearson's r,LR slope,RMSE,MBE,and MAE)were used to validate the data.The results showed that:(1)MODIS LE data and ERA-5 SH data exhibited the closest agreement with ground observations,as indicated by their lowest root mean square error and mean bias area values.(2)The accuracy of ERA-5 SH was the highest in meadows and steppes,while GLDAS SH performed optimally in shrublands.Notably,MODIS LE consistently outperformed the other datasets across all vegetation types.(3)The spatial distribution of LE and SH displayed considerable heterogeneity,contingent upon the specific data sources and underlying surfaces.Notably,there was a contrasting trend between GLDAS and ERA-5,as well as MODIS,in terms of SH distribution in the shrubland.In shrublands and meadows,MODIS SH and LE exhibited more pronounced changes than ERA-5 and GLDAS.Additionally,ERA-5 SH demonstrated the opposite variation in meadow and steppe regions compared to GLDAS and MODIS.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金support of these experiments.This work was supported by the National Natural Science Foundation of China(12405268,12175227,11875255,12375226,and 11975231)the National Magnetic Confinement Fusion Science Program of China(2022YFE03060003,2022YFE03100004)+1 种基金the Fundamental Research Funds for the Central Universities(WK2140000016)the China Postdoctoral Science Foundation(2022M723066).
文摘This study investigates the inward flux events following sawtooth crashes in the edge of HL-2A neutral beam heated plasmas.We identified three distinct types of inward fluxes with varying magnitudes and durations,each associated with unique plasma parameter fluctuations.Magnetic fluctuations,particularly the disruption of magnetic surface structures caused by sawtooth crashes,may play a significant role in modulating plasma dynamics.Moreover,the crossphase term and coherence between density and velocity fluctuations were found to be key factors in these flux events,with high coherence correlating with peak inward flux.These findings enhance the understanding of fluctuation-induced transport after sawtooth crashes and have implications for plasma confinement in fusion devices.
基金partially supported by NSFC(Nos.11701265,11961033).
文摘Peng et al.in[Phys.Rev.Research,2020,2(3):033089,11 pp.]formulated one-way fluxes for a general chemical reaction far from equilibrium,with arbitrary complex mechanisms,multiple intermediates,and internal kinetic cycles.They defined the limit of the ratio of mesoscopic one-way fluxes and the volume of the tank reactor when the volume tends to infinity as macroscopic one-way fluxes,but a rigorous proof of existence of the limit is still awaiting.In this article,we fill this gap under a mild hypothesis:the Markov chain associated with the chemical master equation has finite states and any two columns in the stoichiometric matrices are not identical.In fact,an explicit expression of the limit is obtained.
基金ISRO-RESPOND GAP3332 and PMN-MOES GAP2175 Project support this work.NIO-PMN and MOES-NCPOR supported the deep-sea and Antarctica micrometeorite collections,respectively.
文摘Extraterrestrial phenomena have influenced Earth’s processes throughout geological history.Evaluating the impact of extraterrestrial material on the environment is crucial for understanding the evolution of Earth and life.This study incorporates the investigation of micrometeorites(MMs),abundant cosmic materials on Earth,to understand their influence on the chemical composition and biogeochemistry of the ocean.Comprehensive etching and flux analyses reveal that∼95%of cosmic spherules(CSs)entering seawater are etched or wholly dissolved,supplying nutrients to phytoplankton.Barred spherules show the highest degree of etching(∼19%),followed by porphyritic(∼17%),glass(∼15%),cryptocrystalline(∼12%),scoriaceous(∼10%),G-type(∼9%),and I-type(∼6%).Annually,∼3080 tonnes(t)of olivine from MMs dissolve into seawater,contributing∼495 t of Mg^(2+),∼1110 t of Fe^(2+),and∼1928 t of silicic acid.This signifies that over the Indian Ocean’s∼40 Myr history,∼23 Gt of olivine from CSs has dissolved,providing nutrients to seawater and sequestering∼7 Gt of CO_(2).The world ocean during this time has sequestered∼35 Gt of CO_(2),with fluctuations influenced by extraterrestrial activity.For instance,the Veritas event,lasting∼1.5 Myr,sequestered∼6 Gt of CO_(2)from the atmosphere.A robust flux calculation based on∼2 t of deep-sea sediments from 3610 MMs provides a more accurate estimate of the time-averaged flux of∼229 t yr^(−1).These comprehensive analyses reveal MM’s original characteristics,post-deposition processes,geological record and their overall impact on Earth’s marine environments,thereby contributing to our knowledge of the interconnection between terrestrial and extraterrestrial processes.
基金financially supported by the National Defense Basic Research Program,China(No.JCKY2023204A005)Foundation Strengthening Plan Technical Field Fund,China(No.2021-JJ-0112)+1 种基金Major Scientific and Technological Innovation Project of Luoyang,China(No.2201029A)the National Natural Science Foundation of China(No.U2037601).
文摘The influence of refining flux composition,refining time,refining temperature,and addition amount on the microstructure and mechanical properties of Mg-9Li-3Al-1Zn alloy was investigated with orthogonal experimental design.The flux purification process for Mg-Li alloys was optimized and the most effective ternary flux composition was identified.Results indicate that flux purification significantly mitigates Li loss during smelting by forming a protective surface layer that reduces Li oxidation and evaporation.The optimal flux composition is LiCl:LiF:CaF_(2)in a 3:1:2 mass ratio,with a flux addition of 3%,refining temperature of 720°C,and holding time of 10 min.The elongation of alloy improves to 16.2% after refinement,while the enhancement in strength remains marginal.
基金supported by the National Natural Science Foundation of China(No.52200120)the R&D Program of Beijing Municipal Education Commission(No.KM202310011003)。
文摘The North China Plain(NCP)frequently experiences ozone pollution events,which are generally related to cross-border transport at multiple scales.However,current methods of calculating ozone transport are insufficient to account for ozone transport at different altitudes.To further understand the characteristics of ozone transport,we applied theWeather Research and Forecasting(WRF)model and the Comprehensive Air Quality Model with Extensions(CAMx)based on flux calculation method.The results showed that the simulated flux calculation method was suitable for revealing the evolutionary trend of ozone fluxes.Monthly inflows,outflows,and total net fluxes ranged from-32985.45 to 37361.46 t/d and indicated strong transport and significant spatial and temporal variations of ozone in the urban boundary segments.Vertical distribution analysis of the net ozone fluxes demonstrated that the net fluxes varied with the altitude,and the altitude at which the corresponding peaks were located had a strong correlation with the neighborhood and season.It was noteworthy that there were three main transport directions throughout the year,namely northwest-southeast(NW-SE),southeast-northwest(SE-NW),and southwestnortheast(SW-NE).Additionally,the ozone flux was mainly affected by temperature,wind speed,and ozone concentration,with the correlation coefficient varying by season and altitude,up to 0.78.Moreover,the correlation analysis of ozone flux and wind direction in each city further verified the accuracy of the transport direction.This paper can provide scientific and technological support for the study of ozone generation mechanisms and the solution of urban/interregional ozone pollution problems.
基金Project supported by the National Natural Science Foundation of China(Grant No.62464013)。
文摘This study achieves a notable enhancement in the thermoelectric performance of copper selenide compounds exhibiting liquid-like characteristics via an innovative processing method.A KCl flux-assisted high-temperature melting and slow-cooling strategy was employed to fabricate nanolayered Cu_(2)Se(KCl)_(x)materials(x=0-3,denoted as S_(0)-S_(3)).Systematic characterization reveals that the coexistence ofαandβphases at room temperature creates favorable conditions for optimizing carrier transport.XPS analysis confirms the substitution of low-binding-energy Se_(2)-by high-binding-energy Cl^(-)ions within the lattice,effectively suppressing copper ion migration and remarkably improving the material's structural stability.Microstructural investigations demonstrate that all samples exhibit nanolayered stacking architectures abundant with edge dislocations.This multiscale defect architecture induces strong phonon scattering effects.Hall measurements indicate that the KCl flux-assisted processing facilitates the formation of highly ordered nanostructures,thereby enhancing carrier mobility and structural stability.Although the carrier concentration exhibits a slight decrease compared with the flux-free samples,the significant improvement in microstructural quality plays a crucial role in the synergistic optimization of electrical conductivity and the Seebeck coefficient.Notably,sample S_(2)exhibited a considerable electrical conductivity,reaching approximately 1.0×10^(5)S·m^(-1)at 300 K.More strikingly,the cooperative effect of high-density edge dislocations and dopant atoms elevates material entropy,enabling sample S_(3)to attain an ultralow lattice thermal conductivity of 0.55 W·m^(-1)·K^(-1)at 350 K.Through multi-mechanism coordination,sample S_(2)achieved a high ZT value of 1.45 at 700 K,representing a 2.7-fold improvement compared with traditional synthesis methods.This work provides new insights into performance optimization of liquid-like thermoelectric materials through defect engineering and entropy manipulation.
基金supported by the National Natural Science Foundation of China(No.42050103)。
文摘Continental crust is the long-term achievements of Earth's evolution across billions of years.The continental rocks could have been modified by various types of geological processes,such as metamorphism,weathering,and reworking.Therefore,physical or chemical properties of rocks through time record the composite effects of geological,biological,hydrological,and climatological processes.Temporal variations in these time series datasets could provide important clues for understanding the co-evolution of different layers on Earth.However,deciphering Earth's evolution in deep time is challenged by incompleteness,singularity,and intermittence of geological records associated with extreme geological events,hindering a rigorous assessment of the underlying coupling mechanisms.Here,we applied the recently developed local singularity analysis and wavelet analysis method to deep-time U-Pb age spectra and sedimentary abundance record across the past 3.5 Gyrs.Standard cross-correlation analysis suggests that the singularity records of marine sediment accumulations and magmatism intensity at continental margin are correlated negatively(R^(2)=0.8),with a delay of~100 Myr.Specifically,wavelet coherence analysis suggests a~500-800 Myr cycle of correlation between two records,implying a coupling between the major downward processes(subduction and recycling sediments)and upward processes(magmatic events)related to the aggregation and segregation of supercontinents.The results clearly reveal the long-term cyclic feedback mechanism between sediment accumulation and magmatism intensity through aggregation of supercontinents.
基金The National Key Research and Development Program of China under contract Nos 2022YFC3104203 and 2018YFC0213103the Science Foundation of Donghai Laboratory under contract No.DH-2022KF01019+1 种基金the National Natural Science Foundation under contract No.419061522023 Shanghai Education Science Research Project under contract No.C2023120.
文摘Air-sea water vapor and CO_(2) flux observation experiments were carried out at the Yantai National Satellite Ocean Calibration Platform and the jetty at Monolithic Beach,Juehua Island,using a 100 Hz gas analyzer.The observations were corrected by employing wild point rejection,linear detrending,delay correction,coordinate rotation,time matching,and Webb,Pearman,and Leuning(WPL)correction.The results of spectral analysis and a turbulence development adequacy data quality check showed that the overall observation data quality was good.The air-sea water vapor and CO_(2) flux results showed that the observation duration affected both the air-sea flux intensity and direction at different observation frequencies.At shorter observation durations,the air-sea flux values measured at 100 Hz were smaller than the 20 Hz measurements and had opposite directions.In addition,the WPL correction reduced the overall air-sea flux and partially minimized the effect of observation frequency on the air-sea flux intensity.These results showed that high-frequency observations showed more turbulence variations than low-frequency observations.This conclusion could promote an understanding of small-scale turbulence variations.
基金supported by the Scientific Research Foundation of Hainan Tropical Ocean University(Grant No.RHDRC202301)。
文摘We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Consequently,we identify the super-vortical lattice,as well as the inner-Meissner phase,which presents Meissner currents just along the intimal legs within the flux ladder.The staggered-current phase is also allowed,with its formation condition altered because of the four-leg construction.The number of legs on the flux ladder can make an effect.
基金sponsored by the Fundamental Research Funds for the Central Universities(No.232024G-10)and National Natural Sciences Foundation of China(Nos.12075052,12275098 and 12275307)the ENN Group and the ENN Energy Research Institute.
文摘The divertor design is critical to heat load handling and thus to achievements of highperformance plasma operations in the EHL-2(ENN He-Long 2)tokamak.This paper presents the design of an X-point target(XPT)divertor,featuring a conventional inner divertor and an XPT outer divertor,aimed at the effective control of heat loads,which may be extremely high during high ion temperature scenarios.The divertor target plates are made from carbon-based materials,which can handle heat loads of up to 5 MW/m².Divertor performances,including the heat load controllability,the onset of detachment and the in-out/up-down asymmetry,etc.,are evaluated using both the simple particle-tracking strategy and the complicated SOLPS-ITER code.Special attention is paid to the drift effects on particle/heat transport in the divertor/scrape-off layer region and on the divertor heat loads,focusing on the semi-detached/detached operation regimes.Results from SOLPS-ITER simulations demonstrated that the currently designed magnetic equilibrium and divertor configuration can effectively handle the power heat load in EHL-2.