In this editorial,we comment on the article by Li et al.We specifically focus on the novel use of multicolor near-infrared fluorescence imaging(MCFI)with indocyanine green in laparoscopic cholecystectomy,which is an i...In this editorial,we comment on the article by Li et al.We specifically focus on the novel use of multicolor near-infrared fluorescence imaging(MCFI)with indocyanine green in laparoscopic cholecystectomy,which is an innovative approach for enhancing biliary visualization during laparoscopic cholecystectomy.This study also highlighted the limitations of conventional single-color fluorescence imaging(SCFI),which relies solely on a green fluorescence signal,leading to challenges such as visual fatigue and difficulty in distinguishing biliary structures from background hepatic tissue.Given the complex anatomy of the biliary system and the challenges of visual fatigue encountered with SCFI,MCFI addresses these issues by enabling the differentiation of biliary structures by mapping the fluorescence intensity across a unique blue-to-purple color spectrum,thus improving the clarity of anatomical structures and reducing the visual strain for surgeons.We also focus specifically on the complications and cautious usage of indocyanine green in this context,as well as the advantages and disadvantages of MCFI and SCFI.Overall,MCFI represents a significant advancement in fluorescence-guided surgery,with the potential to become a standard imaging modality for safer and more effective laparoscopic procedures.展开更多
Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cance...Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes.展开更多
Silver ion(Ag^(+))is a highly toxic metal ion,and its monitoring in water or food resources has become extraordinarily necessary within the scope of human health.In the light of the fact of Ag^(+)-induced folding stru...Silver ion(Ag^(+))is a highly toxic metal ion,and its monitoring in water or food resources has become extraordinarily necessary within the scope of human health.In the light of the fact of Ag^(+)-induced folding structure of specific peptides,an unlabeled and highselectivity Ag^(+)assay is presented by means of intrinsic fluorescence of peptides.Under the quenching effect of gold nanoparticles(AuNPs),characteristic fluorescence of peptides could be considerably reduced by rapid modification.Along with the Ag adding,the fluorescence signals of peptide-AuNPs are largely enhanced by the behavior between peptides and Agt.This is basically involving the formation of 4-coordinated complexes,generating the changes of peptides in structure and fluorescence properties.Under this circumstance,the adverse influence of plenty of interfering ions is suppressed,including the toxic Hg^(2+),Pb^(2+).The results highlight that Ag ions could be selectively recognized as low as 2.4 nmol/L with a linear range of 5 to 800 nmol/L.In comparison with other programs,the given approach declares simplicity,sensitivity,and superior selectivity.Furthermore,the biosensor excels in the practical application in water samples(e.g.,lake,tap and drinking water)owing to its non-interference and on-site rapid determination.展开更多
Up to now,“Turn-on”fluorescence sensor exhibits promising potential toward the detection of heavy metal ions,anions,drugs,organic dyes,DNA,pesticides,and other amino acids due to their simple,quick detection,and hig...Up to now,“Turn-on”fluorescence sensor exhibits promising potential toward the detection of heavy metal ions,anions,drugs,organic dyes,DNA,pesticides,and other amino acids due to their simple,quick detection,and high sensitivity and selectivity.Herein,a novel fluorescence method of detecting Cr^(3+)in an aqueous solution was described based on the fluorescence resonance energy transfer between rhodamine B(Rh B)and gold nanoparticles(Au NPs).The fluorescence of Rh B solution could be obviously quenched(“off”state)with the presence of citrate-stabilized Au NPs.However,upon addition of Cr^(3+)to Au NPs@Rh B system,the fluorescence of Au NPs was recovered owing to the strong interaction between Cr^(3+)and the specific groups on the surface of citrate-stabilized Au NPs,which will lead to the aggregation of Au NPs(“on”state).At this point,the color of the reaction solution turned to black.Under optimal conditions,the limit of detection(LOD)for Cr^(3+)was 0.95 n M(signal-to-noise ratio,S/N=3)with a linear range of 0.164 n M to 3.270μM.Furthermore,the proposed method exhibits excellent performances,such as rapid analysis,high sensitivity,extraordinary selectivity,easy preparation,switch-on fluorescence response,and non-time consuming.展开更多
Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O soluti...Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O solution.The assembly and fluorescence behavior of PDI-COOH/Ca^(2+)were studied in detail by changing hydration state with different concentrations.Based on the differences in assembly morphology and stoichiometric ratios of PDICOOH/Ca^(2+),we proposed the fluorescence emission mechanism of PDI-COOH/Ca^(2+)in THF/H_(2)O and THF,respectively.This work reveals a novel strategy of aggregated state fluorescence enhancement and reminds us of the important role of water in molecular fluorescence emission and assembly.展开更多
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac...The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.展开更多
Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for glo...Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.展开更多
Fluorescence lateral flow immunoassay(LFA)has emerged as a powerful tool for rapid screening of various biomarkers owing to its simplicity,sensitivity and flexibility.It is noteworthy that fluorescent probe mainly det...Fluorescence lateral flow immunoassay(LFA)has emerged as a powerful tool for rapid screening of various biomarkers owing to its simplicity,sensitivity and flexibility.It is noteworthy that fluorescent probe mainly determines the analytical performance of LFA.Due to the emission and excitation wavelengths are located in the visible region,most fluorophores are inevitably subject to light scattering and background autofluorescence.Herein,we reported a novel LFA sensor based on the second near-infrared(NIR-Ⅱ)fluorescent probe with excellent anti-interference capability.The designed NIR-Ⅱprobe was the Nd^(3+)and Yb^(3+)doped rare earth nanoparticles(RENPs)by employing Nd^(3+)as energy donor and Yb^(3+)as energy acceptor,which of the donor-acceptor energy transfer(ET)efficiency reached up to 80.7%.Meanwhile,relying on the convenient and effective encapsulation strategy of poly(lactic-co-glycolic acid)(PLGA)microspheres to RENPs,the surface functionalized NIR-Ⅱprobe(RE@PLGA)was obtained for subsequent bioconjugation.Benefiting from the optical advantages of NIR-Ⅱprobe,this proposed NIR-ⅡLFA displayed a good linear relationship ranging from 7 ng/mL to 200 ng/mL for the detection ofα-fetoprotein(AFP),an important biomarker of hepatocellular carcinoma(HCC).The limit of detection(LOD)was determined as low as 3.0 ng/m L,which was of 8.3 times lower than clinical cutoff value.It is promising that LFA sensor based on this efficient RENPs probe provides new opportunities for high sensitive detection of various biomarkers in biological samples.展开更多
Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6...Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.展开更多
A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_...A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_(2)O.The structure was characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,and infrared spectroscopy.Cd-CP belongs to the monoclinic crystal system with the P2_1/c space group and performs in a 1D double-chain structure.The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding.Thermogravimetric analysis shows that Cd-CP has good thermal stability.Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions(Fe^(3+)and Zn^(2+)),2,4,6-trinitrophenylhydrazine(TRI),and pyrimethanil(Pth).Interestingly,when Cd-CP was used for fluorescence detection of metal ions,it was found to have a fluorescence quenching effect on Fe^(3+)but had an obvious enhancement effect on Zn^(2+).Therefore,we designed an“on-off-on”logic gate.In addition,the mechanism of fluorescence sensing has been deeply explored.CCDC:2258625.展开更多
Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether ...Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.展开更多
We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.C...We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.Compared with single N-doped BCDs(N-BCDs) and Pr-doped BCDs(Pr-BCDs),Pr/N-BCDs not only showed better fluorescence properties and stability but also achieved a significant increase in quantum yield of 12%.More importantly,under certain conditions,Pr/N-BCDs and 2,4-dinitrophenylhydrazide(2,4-DNPH) had significant fluorescence internal filtration effect(IFE) and dynamic quenching effect,and in the concentration range of0.50-20 μmol·L^(-1),the concentration of 2,4-DNPH had a good linear relationship with the fluorescence quenching signal,and the detection limit was as low as 2.1 nmol·L^(-1).展开更多
This study aimed to decipher the mechanism by which exogenous methyl jasmonate(MeJA)regulated the photosynthesis of Malus spectabilis leaves under ozone(O_(3))stress.The photosynthetic parameters and chlorophyll fluor...This study aimed to decipher the mechanism by which exogenous methyl jasmonate(MeJA)regulated the photosynthesis of Malus spectabilis leaves under ozone(O_(3))stress.The photosynthetic parameters and chlorophyll fluorescence parameters of M.spectabilis‘Hongjiu’seedlings under O_(3)stress were measured by spraying different concentrations of MeJA.The results showed that O_(3)stress significantly reduced the chlorophyll a and total chlorophyll content,net photosynthetic rate(Pn),stomatal conductance(G_(s)),transpiration rate(T_(r)),maximum fluorescence yield(F_(m)),maximum quantum yield of photosystem II(F_(v)/F_(m)),and actual photochemical efficiency of photosystem II(Ф_(PSII)),while increasing the intercellular CO_(2)concentration(Ci).Exogenous MeJA reduced the Ci and original fluorescence yield(Fo),while increasing chlorophyll a,chlorophyll b,and total chlorophyll content,P_(n),G_(s),T_(r),F_(m),F_(v)/F_(m),andФ_(PSII) of the leaves under O_(3)stress.The application of 150μmol/L MeJA showed the best effect.The above results demonstrated that exogenous MeJA could enhance chlorophyll content and photosynthetic capacity,thereby improving the tolerance of M.spectabilis to O_(3)stress.展开更多
Mitochondria are crucial organelles responsible for maintaining cell growth,and their homeostasis is closely linked to p H regulation.Physiologically,mitochondria exhibit a weakly alkaline state(pH~8.0).However,when s...Mitochondria are crucial organelles responsible for maintaining cell growth,and their homeostasis is closely linked to p H regulation.Physiologically,mitochondria exhibit a weakly alkaline state(pH~8.0).However,when subjected to stress stimuli that cause damage,cells initiate the process of mitophagy,resulting in mitochondrial acidification.Therefore,monitoring changes in mitochondrial p H to comprehend the physiological processes associated with mitophagy is essential.In this study,we developed an asymmetric pentamethine cyanine dye Cy5.5-H-Cy N as a probe for continuous monitoring of mitophagy in living cells.By incorporating an azaindole structure into the dye molecule,a ratiometric fluorescence response was achieved that is specifically responsive to p H variations while preserving its ability to target mitochondria and emit near-infrared fluorescence.Through various methods inducing mitophagy,Cy5.5-H-Cy N was employed to determine mitochondrial p H quantitatively,demonstrating its suitability as an ideal probe for continuous monitoring of mitophagy in living cells.展开更多
Volatile aromatic aldehydes,including benzaldehyde(BzH),4-fluorobenzaldehyde(4-F-BzH),4-isobutylbenzaldehyde(4-iBu-BzH),3-trifluoromethylbenzaldehyde(3-CF_(3)-BzH),p-methoxybenzaldehyde(4-MeO-BzH),and o-trifluoromethy...Volatile aromatic aldehydes,including benzaldehyde(BzH),4-fluorobenzaldehyde(4-F-BzH),4-isobutylbenzaldehyde(4-iBu-BzH),3-trifluoromethylbenzaldehyde(3-CF_(3)-BzH),p-methoxybenzaldehyde(4-MeO-BzH),and o-trifluoromethylbenzaldehyde(2-CF_(3)-BzH),are crucial raw materials for the synthesis of various pesticides and pharmaceuticals[1].展开更多
In this study,a simple and effective ratiometric fluorescence method has been developed for carbaryl detection,utilizing red emissive carbon dots(R-CDs).The underlying principle of this proposed strategy relies on the...In this study,a simple and effective ratiometric fluorescence method has been developed for carbaryl detection,utilizing red emissive carbon dots(R-CDs).The underlying principle of this proposed strategy relies on the rapid hydrolysis of carbaryl under an alkaline condition and production of 1-naphthol with blue-emission at 462 nm.Furthermore,the as-synthesized R-CDs(Em.677 nm),serve as a reference,enhancing the visual tracking of carbaryl through the transformation of fluorescent color from red to blue.The concentration of carbaryl exhibits a commendable linear correlation with the ratio of fluorescence intensity,ranging from 0 to 20μg/m L(R^(2)=0.9989)with a low detection limit of 0.52 ng/m L.Additionally,the described methodology can be used for the enzyme-free visual assay of carbaryl,even in the presence of other carbamate pesticides and metal ions,in tap water and lake water samples with excellent accuracy(spiked recoveries,94%-106.1%),high precision(relative standard deviation(RSD)≤2.42),and remarkable selectivity.This fast and highly sensitive naked-eye ratiometric sensor holds immense promise for carbaryl detection in intricate environments and food safety fields.展开更多
Cholecystectomy is extensively employed for the treatment of various gallbladder diseases,including symptomatic cholelithiasis,asymptomatic cholelithiasis with a high risk of gallbladder cancer or complications,non-ca...Cholecystectomy is extensively employed for the treatment of various gallbladder diseases,including symptomatic cholelithiasis,asymptomatic cholelithiasis with a high risk of gallbladder cancer or complications,non-calculous cholecystitis,gallbladder polyps larger than 1.0 cm,and porcelain gallbladder,etc.Currently,laparoscopic cholecystectomy(LC)constitutes over 95%of all cholecystectomy procedures,which is the preferred approach for gallbladder surgery[1,2].展开更多
Indocyanine green fluorescence imaging technology has been increasingly utilized in rectal surgery in recent years.As a safe tracer,indocyanine green can facilitate lymph node tracing,assess the blood supply at anasto...Indocyanine green fluorescence imaging technology has been increasingly utilized in rectal surgery in recent years.As a safe tracer,indocyanine green can facilitate lymph node tracing,assess the blood supply at anastomotic sites,and localize tumour lesions during laparoscopic surgery,thereby resulting in favourable outcomes.This technology helps surgeons to achieve more precise diagnoses and treatments in laparoscopic procedures,thus ultimately benefiting patients.However,the current application of indocyanine green fluorescence imaging technology still lacks standardized regulations,and certain effects remain contentious.This study provides a comprehensive review of the application of indocyanine green in laparoscopic surgery for rectal cancer based on the pertinent literature.展开更多
Ferroptosis is a new regulated cell death process executed by lipid peroxidation(LPO)of polyunsaturated fatty acids.Lipid droplets(LDs),as an important organelle for lipid storage and metabolism,are probably a major s...Ferroptosis is a new regulated cell death process executed by lipid peroxidation(LPO)of polyunsaturated fatty acids.Lipid droplets(LDs),as an important organelle for lipid storage and metabolism,are probably a major site of LPO and play critical roles in the regulation of ferroptosis.However,the detailed study on LPO in LDs has not been carried out because of the lack of LD-targeting tools for the in situ monitoring of LPO.Herein,the first LD-targeting LPO fluorescence probe(LD-LPO)has been developed.LD-LPO exhibits a rapid and selective fluorescence enhancement at 518 nm,which is unaffected by highly destructive reactive oxygen species(e.g.,hydroxyl radical)and environmental factor changes(e.g.,polarity and viscosity).LD-LPO is capable of targeting LDs and visualizing LPO within LDs in situ during erastin-or(1S,3R)-RSL3(RSL3)-induced ferroptosis.Moreover,LD-LPO has also been used to image LPO in the ferroptosis-associated non-alcoholic fatty liver disease(NAFLD),and to evaluate the medicine treatment of NAFLD with saroglitazar,demonstrating its utility for monitoring LPO levels in biosystems.The favorable analytical and imaging performance of LD-LPO may allow its application in more ferroptosisassociated physiological and pathological processes.展开更多
Glial fibrillary acidic protein(GFAP)is one of the discriminative biomarkers for diagnosing traumatic brain injury(TBI),and accurate determination of GFAP is clinically significant.In this study,a novel fluorescence i...Glial fibrillary acidic protein(GFAP)is one of the discriminative biomarkers for diagnosing traumatic brain injury(TBI),and accurate determination of GFAP is clinically significant.In this study,a novel fluorescence immunoassay system was designed.We encapsulated carbon dots with a high fluorescence quantum yield(QY=92.5%)inside silicon nanocapsules to serve as fluorescent markers.These markers were then integrated with the streptavidin(SA)-biotin biomagnification system and immunomagnetic separation technology for the sensitive detection of GFAP.Based on the signal cascade amplification effect of the silicon nanocapsules and SA-biotin,the fluorescence signal of the SA-biotin-modified immunofluorescence nanocapsules increased 3.6-fold compared to the carbon dot-based immunoprobe.The fluorescence immunoassay system was constructed for GFAP using SA-biotin-modified immunocapsules as the sensing probe and immunomagnetic nanoparticles as the immunorecognition probe.The fluorescence immunoassay system can specifically and ultra-sensitively quantify GFAP in blood samples,with a detection range of 10 pg/mL–10 ng/mL and detection limits of 3.2 pg/mL(serum)and 3.6 pg/mL(plasma).Moreover,the fluorescence immunoassay system exhibited prominent recoveries of 99.4%–100.4%(phosphate buffered saline),96%–102.6%(serum),and 93.2%–110.2%(plasma),with favorable specificity and excellent stabilization.The novel fluorescence immunoassay system provides a new approach to the clinical analysis of GFAP and may serve as a potential tool for screening and diagnosing TBI.展开更多
文摘In this editorial,we comment on the article by Li et al.We specifically focus on the novel use of multicolor near-infrared fluorescence imaging(MCFI)with indocyanine green in laparoscopic cholecystectomy,which is an innovative approach for enhancing biliary visualization during laparoscopic cholecystectomy.This study also highlighted the limitations of conventional single-color fluorescence imaging(SCFI),which relies solely on a green fluorescence signal,leading to challenges such as visual fatigue and difficulty in distinguishing biliary structures from background hepatic tissue.Given the complex anatomy of the biliary system and the challenges of visual fatigue encountered with SCFI,MCFI addresses these issues by enabling the differentiation of biliary structures by mapping the fluorescence intensity across a unique blue-to-purple color spectrum,thus improving the clarity of anatomical structures and reducing the visual strain for surgeons.We also focus specifically on the complications and cautious usage of indocyanine green in this context,as well as the advantages and disadvantages of MCFI and SCFI.Overall,MCFI represents a significant advancement in fluorescence-guided surgery,with the potential to become a standard imaging modality for safer and more effective laparoscopic procedures.
基金supported by Guangzhou Development Zone Science and Technology(2021GH10,2020GH10,2023GH02)the University of Macao(MYRG2022-00271-FST)The Science and Technology Development Fund(FDCT)of Macao(0032/2022/A).
文摘Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes.
基金Supported by the National Natural Science Foundation of China(21775114,21874102)。
文摘Silver ion(Ag^(+))is a highly toxic metal ion,and its monitoring in water or food resources has become extraordinarily necessary within the scope of human health.In the light of the fact of Ag^(+)-induced folding structure of specific peptides,an unlabeled and highselectivity Ag^(+)assay is presented by means of intrinsic fluorescence of peptides.Under the quenching effect of gold nanoparticles(AuNPs),characteristic fluorescence of peptides could be considerably reduced by rapid modification.Along with the Ag adding,the fluorescence signals of peptide-AuNPs are largely enhanced by the behavior between peptides and Agt.This is basically involving the formation of 4-coordinated complexes,generating the changes of peptides in structure and fluorescence properties.Under this circumstance,the adverse influence of plenty of interfering ions is suppressed,including the toxic Hg^(2+),Pb^(2+).The results highlight that Ag ions could be selectively recognized as low as 2.4 nmol/L with a linear range of 5 to 800 nmol/L.In comparison with other programs,the given approach declares simplicity,sensitivity,and superior selectivity.Furthermore,the biosensor excels in the practical application in water samples(e.g.,lake,tap and drinking water)owing to its non-interference and on-site rapid determination.
基金supported by the Natural Science Foundation of Qinghai Province in China(No.2019-ZJ-944Q)the University-level Planning Project of Qinghai Minzu University of Qinghai Province in China(Nos.2022GH11 and 2022GH13)。
文摘Up to now,“Turn-on”fluorescence sensor exhibits promising potential toward the detection of heavy metal ions,anions,drugs,organic dyes,DNA,pesticides,and other amino acids due to their simple,quick detection,and high sensitivity and selectivity.Herein,a novel fluorescence method of detecting Cr^(3+)in an aqueous solution was described based on the fluorescence resonance energy transfer between rhodamine B(Rh B)and gold nanoparticles(Au NPs).The fluorescence of Rh B solution could be obviously quenched(“off”state)with the presence of citrate-stabilized Au NPs.However,upon addition of Cr^(3+)to Au NPs@Rh B system,the fluorescence of Au NPs was recovered owing to the strong interaction between Cr^(3+)and the specific groups on the surface of citrate-stabilized Au NPs,which will lead to the aggregation of Au NPs(“on”state).At this point,the color of the reaction solution turned to black.Under optimal conditions,the limit of detection(LOD)for Cr^(3+)was 0.95 n M(signal-to-noise ratio,S/N=3)with a linear range of 0.164 n M to 3.270μM.Furthermore,the proposed method exhibits excellent performances,such as rapid analysis,high sensitivity,extraordinary selectivity,easy preparation,switch-on fluorescence response,and non-time consuming.
文摘Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O solution.The assembly and fluorescence behavior of PDI-COOH/Ca^(2+)were studied in detail by changing hydration state with different concentrations.Based on the differences in assembly morphology and stoichiometric ratios of PDICOOH/Ca^(2+),we proposed the fluorescence emission mechanism of PDI-COOH/Ca^(2+)in THF/H_(2)O and THF,respectively.This work reveals a novel strategy of aggregated state fluorescence enhancement and reminds us of the important role of water in molecular fluorescence emission and assembly.
基金supported by the National Natural Science Foundation of China(No.U21A20290)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011656)+2 种基金the Projects of Talents Recruitment of GDUPT(No.2023rcyj1003)the 2022“Sail Plan”Project of Maoming Green Chemical Industry Research Institute(No.MMGCIRI2022YFJH-Y-024)Maoming Science and Technology Project(No.2023382).
文摘The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.
基金funded by the National Natural Science Foundation of China(Nos.22374055,22022404,22074050,82172055)the National Natural Science Foundation of Hubei Province(No.22022CFA033)the Fundamental Research Funds for the Central Universities(Nos.CCNU24JCPT001,CCNU24JCPT020)。
文摘Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.
基金supported by the National Natural Science Foundation of China(Nos.U2267221,22107029,22377135)the Bohai Rim Advanced Research Institute for Drug Discovery(No.LX215002)+5 种基金the Natural Science Foundation of Shandong Province(No.ZR2022QH212)the Taishan Scholars Program(No.tsqn202312305)the Young Elite Scientists Sponsorship Program by Chinese Chemical Societythe Fundamental Research Projects of Science&Technology Innovation and development Plan in Yantai City(No.2023JCYJ059)the Shandong Laboratory Program(No.SYS202205)the Shanghai Postdoctoral Excellence Program(No.2023704)。
文摘Fluorescence lateral flow immunoassay(LFA)has emerged as a powerful tool for rapid screening of various biomarkers owing to its simplicity,sensitivity and flexibility.It is noteworthy that fluorescent probe mainly determines the analytical performance of LFA.Due to the emission and excitation wavelengths are located in the visible region,most fluorophores are inevitably subject to light scattering and background autofluorescence.Herein,we reported a novel LFA sensor based on the second near-infrared(NIR-Ⅱ)fluorescent probe with excellent anti-interference capability.The designed NIR-Ⅱprobe was the Nd^(3+)and Yb^(3+)doped rare earth nanoparticles(RENPs)by employing Nd^(3+)as energy donor and Yb^(3+)as energy acceptor,which of the donor-acceptor energy transfer(ET)efficiency reached up to 80.7%.Meanwhile,relying on the convenient and effective encapsulation strategy of poly(lactic-co-glycolic acid)(PLGA)microspheres to RENPs,the surface functionalized NIR-Ⅱprobe(RE@PLGA)was obtained for subsequent bioconjugation.Benefiting from the optical advantages of NIR-Ⅱprobe,this proposed NIR-ⅡLFA displayed a good linear relationship ranging from 7 ng/mL to 200 ng/mL for the detection ofα-fetoprotein(AFP),an important biomarker of hepatocellular carcinoma(HCC).The limit of detection(LOD)was determined as low as 3.0 ng/m L,which was of 8.3 times lower than clinical cutoff value.It is promising that LFA sensor based on this efficient RENPs probe provides new opportunities for high sensitive detection of various biomarkers in biological samples.
文摘Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.
文摘A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_(2)O.The structure was characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,and infrared spectroscopy.Cd-CP belongs to the monoclinic crystal system with the P2_1/c space group and performs in a 1D double-chain structure.The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding.Thermogravimetric analysis shows that Cd-CP has good thermal stability.Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions(Fe^(3+)and Zn^(2+)),2,4,6-trinitrophenylhydrazine(TRI),and pyrimethanil(Pth).Interestingly,when Cd-CP was used for fluorescence detection of metal ions,it was found to have a fluorescence quenching effect on Fe^(3+)but had an obvious enhancement effect on Zn^(2+).Therefore,we designed an“on-off-on”logic gate.In addition,the mechanism of fluorescence sensing has been deeply explored.CCDC:2258625.
基金financially supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20241181)the State Key Laboratory of AnalyticalChemistry for Life Science,School of Chemistry and Chemical Engineering,Nanjing University(Grant No.SKLACLS2419)。
文摘Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.
基金supported by the National Natural Science Foundation of China (Grant No.22063010)the Natural Science Foundation of Shaanxi Province (Grant No.2022QFY07-05)Yan'an Science and Technology Plan Project (Grants No.2022SLJBZ-002, 2023-CYL-193)。
文摘We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.Compared with single N-doped BCDs(N-BCDs) and Pr-doped BCDs(Pr-BCDs),Pr/N-BCDs not only showed better fluorescence properties and stability but also achieved a significant increase in quantum yield of 12%.More importantly,under certain conditions,Pr/N-BCDs and 2,4-dinitrophenylhydrazide(2,4-DNPH) had significant fluorescence internal filtration effect(IFE) and dynamic quenching effect,and in the concentration range of0.50-20 μmol·L^(-1),the concentration of 2,4-DNPH had a good linear relationship with the fluorescence quenching signal,and the detection limit was as low as 2.1 nmol·L^(-1).
文摘This study aimed to decipher the mechanism by which exogenous methyl jasmonate(MeJA)regulated the photosynthesis of Malus spectabilis leaves under ozone(O_(3))stress.The photosynthetic parameters and chlorophyll fluorescence parameters of M.spectabilis‘Hongjiu’seedlings under O_(3)stress were measured by spraying different concentrations of MeJA.The results showed that O_(3)stress significantly reduced the chlorophyll a and total chlorophyll content,net photosynthetic rate(Pn),stomatal conductance(G_(s)),transpiration rate(T_(r)),maximum fluorescence yield(F_(m)),maximum quantum yield of photosystem II(F_(v)/F_(m)),and actual photochemical efficiency of photosystem II(Ф_(PSII)),while increasing the intercellular CO_(2)concentration(Ci).Exogenous MeJA reduced the Ci and original fluorescence yield(Fo),while increasing chlorophyll a,chlorophyll b,and total chlorophyll content,P_(n),G_(s),T_(r),F_(m),F_(v)/F_(m),andФ_(PSII) of the leaves under O_(3)stress.The application of 150μmol/L MeJA showed the best effect.The above results demonstrated that exogenous MeJA could enhance chlorophyll content and photosynthetic capacity,thereby improving the tolerance of M.spectabilis to O_(3)stress.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.DUT23YG137 and DUT22LAB601)Liaoning Binhai Laboratory(No.LBLB-202303)+1 种基金Liaoning Province Science and Technology Joint Fund(Nos.2023JH2/101800039 and 2023JH2/101800037)National Natural Science Foundation of China(Nos.21925802,22090011,and 21878039)。
文摘Mitochondria are crucial organelles responsible for maintaining cell growth,and their homeostasis is closely linked to p H regulation.Physiologically,mitochondria exhibit a weakly alkaline state(pH~8.0).However,when subjected to stress stimuli that cause damage,cells initiate the process of mitophagy,resulting in mitochondrial acidification.Therefore,monitoring changes in mitochondrial p H to comprehend the physiological processes associated with mitophagy is essential.In this study,we developed an asymmetric pentamethine cyanine dye Cy5.5-H-Cy N as a probe for continuous monitoring of mitophagy in living cells.By incorporating an azaindole structure into the dye molecule,a ratiometric fluorescence response was achieved that is specifically responsive to p H variations while preserving its ability to target mitochondria and emit near-infrared fluorescence.Through various methods inducing mitophagy,Cy5.5-H-Cy N was employed to determine mitochondrial p H quantitatively,demonstrating its suitability as an ideal probe for continuous monitoring of mitophagy in living cells.
基金supported by National Natural Science Foundation of China(22361031,22308260).
文摘Volatile aromatic aldehydes,including benzaldehyde(BzH),4-fluorobenzaldehyde(4-F-BzH),4-isobutylbenzaldehyde(4-iBu-BzH),3-trifluoromethylbenzaldehyde(3-CF_(3)-BzH),p-methoxybenzaldehyde(4-MeO-BzH),and o-trifluoromethylbenzaldehyde(2-CF_(3)-BzH),are crucial raw materials for the synthesis of various pesticides and pharmaceuticals[1].
基金supported by the Natural Science Foundation of the Science and Technology Department of Jilin Province(No.20220101086JC)。
文摘In this study,a simple and effective ratiometric fluorescence method has been developed for carbaryl detection,utilizing red emissive carbon dots(R-CDs).The underlying principle of this proposed strategy relies on the rapid hydrolysis of carbaryl under an alkaline condition and production of 1-naphthol with blue-emission at 462 nm.Furthermore,the as-synthesized R-CDs(Em.677 nm),serve as a reference,enhancing the visual tracking of carbaryl through the transformation of fluorescent color from red to blue.The concentration of carbaryl exhibits a commendable linear correlation with the ratio of fluorescence intensity,ranging from 0 to 20μg/m L(R^(2)=0.9989)with a low detection limit of 0.52 ng/m L.Additionally,the described methodology can be used for the enzyme-free visual assay of carbaryl,even in the presence of other carbamate pesticides and metal ions,in tap water and lake water samples with excellent accuracy(spiked recoveries,94%-106.1%),high precision(relative standard deviation(RSD)≤2.42),and remarkable selectivity.This fast and highly sensitive naked-eye ratiometric sensor holds immense promise for carbaryl detection in intricate environments and food safety fields.
文摘Cholecystectomy is extensively employed for the treatment of various gallbladder diseases,including symptomatic cholelithiasis,asymptomatic cholelithiasis with a high risk of gallbladder cancer or complications,non-calculous cholecystitis,gallbladder polyps larger than 1.0 cm,and porcelain gallbladder,etc.Currently,laparoscopic cholecystectomy(LC)constitutes over 95%of all cholecystectomy procedures,which is the preferred approach for gallbladder surgery[1,2].
基金Supported by Fujian Provincial Health and Youth Research Project,No.2022QNA066the Key Clinical Specialty Discipline Construction Program of Fujian,Fujian Health Medicine and Politics,No.[2022]884.
文摘Indocyanine green fluorescence imaging technology has been increasingly utilized in rectal surgery in recent years.As a safe tracer,indocyanine green can facilitate lymph node tracing,assess the blood supply at anastomotic sites,and localize tumour lesions during laparoscopic surgery,thereby resulting in favourable outcomes.This technology helps surgeons to achieve more precise diagnoses and treatments in laparoscopic procedures,thus ultimately benefiting patients.However,the current application of indocyanine green fluorescence imaging technology still lacks standardized regulations,and certain effects remain contentious.This study provides a comprehensive review of the application of indocyanine green in laparoscopic surgery for rectal cancer based on the pertinent literature.
基金the financial support from the National Natural Science Foundation of China(Nos.82060626,22004137,22164022,22174147,22074151,22374153,22174148)Excellent Youth scientific and technological talents of Guizhou Province(No.Qiankehe platform talents[2021]5638)+3 种基金Talents of Guizhou Science and Technology Cooperation Platform(No.[2020]4104)Science and Technology Innovation Team of Higher Education of Guizhou Provincial Education Department(No.Qianjiaoji[2023]073)Future Science and Technology Elite Talent Cultivation Project of Zunyi Medical University(No.ZYSE-2021-01)Zunyi Science and Technology Plan Project(No.Zunshi Keren Platform[2023]2)。
文摘Ferroptosis is a new regulated cell death process executed by lipid peroxidation(LPO)of polyunsaturated fatty acids.Lipid droplets(LDs),as an important organelle for lipid storage and metabolism,are probably a major site of LPO and play critical roles in the regulation of ferroptosis.However,the detailed study on LPO in LDs has not been carried out because of the lack of LD-targeting tools for the in situ monitoring of LPO.Herein,the first LD-targeting LPO fluorescence probe(LD-LPO)has been developed.LD-LPO exhibits a rapid and selective fluorescence enhancement at 518 nm,which is unaffected by highly destructive reactive oxygen species(e.g.,hydroxyl radical)and environmental factor changes(e.g.,polarity and viscosity).LD-LPO is capable of targeting LDs and visualizing LPO within LDs in situ during erastin-or(1S,3R)-RSL3(RSL3)-induced ferroptosis.Moreover,LD-LPO has also been used to image LPO in the ferroptosis-associated non-alcoholic fatty liver disease(NAFLD),and to evaluate the medicine treatment of NAFLD with saroglitazar,demonstrating its utility for monitoring LPO levels in biosystems.The favorable analytical and imaging performance of LD-LPO may allow its application in more ferroptosisassociated physiological and pathological processes.
基金supported by the AMS Funding Project(No.ZZB2023C7010).
文摘Glial fibrillary acidic protein(GFAP)is one of the discriminative biomarkers for diagnosing traumatic brain injury(TBI),and accurate determination of GFAP is clinically significant.In this study,a novel fluorescence immunoassay system was designed.We encapsulated carbon dots with a high fluorescence quantum yield(QY=92.5%)inside silicon nanocapsules to serve as fluorescent markers.These markers were then integrated with the streptavidin(SA)-biotin biomagnification system and immunomagnetic separation technology for the sensitive detection of GFAP.Based on the signal cascade amplification effect of the silicon nanocapsules and SA-biotin,the fluorescence signal of the SA-biotin-modified immunofluorescence nanocapsules increased 3.6-fold compared to the carbon dot-based immunoprobe.The fluorescence immunoassay system was constructed for GFAP using SA-biotin-modified immunocapsules as the sensing probe and immunomagnetic nanoparticles as the immunorecognition probe.The fluorescence immunoassay system can specifically and ultra-sensitively quantify GFAP in blood samples,with a detection range of 10 pg/mL–10 ng/mL and detection limits of 3.2 pg/mL(serum)and 3.6 pg/mL(plasma).Moreover,the fluorescence immunoassay system exhibited prominent recoveries of 99.4%–100.4%(phosphate buffered saline),96%–102.6%(serum),and 93.2%–110.2%(plasma),with favorable specificity and excellent stabilization.The novel fluorescence immunoassay system provides a new approach to the clinical analysis of GFAP and may serve as a potential tool for screening and diagnosing TBI.