The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient uti...The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient utilization of lepidolite as a lithium source.Therefore,the processes for the flotation of lepidolite have been studied in depth,particularly the development and use of lepidolite flotation collectors and the action mechanism of the collectors on the lepidolite surface.Based on the crystal-structure characteristics of lepidolite minerals,this review focuses on the application of anionic collectors,amine cationic collectors(primary amines,quaternary ammonium salts,ether amines,and Gemini amines),and combined collectors to the flotation behavior of lepidolite as well as the adsorption mechanisms.New directions and technologies for the controllable flotation of lepidolite are proposed,including process improvement,reagent synthesis,and mechanistic research.This analysis demonstrates the need for the further study of the complex environment inside lepidolite and pulp.By using modern analytical detection methods and quantum chemical calculations,research on reagents for the flotation of lepidolite has expanded,providing new concepts and references for the efficient flotation recovery and utilization of lepidolite.展开更多
It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla we...It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.展开更多
The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters s...The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters such as superficial water velocity,air-flow rate,and frother dosage on bubble-size and distribution characteristics were investigated.This study aims to provide theoretical support for enabling fluidized-bed flotation within coarse-particle flotation columns.The results show that negative pressure for air inspiratory and bubble formation is generated by passing a high-speed jet through a throat,and the greatest number of bubbles are observed under natural inspiratory state at an air-liquid ratio of 1:3-1:2.5.Increasing the air-flow rate transforms the bubble diameter distribution from a peaked distribution to a more uniform distribution.Furthermore,the frother narrows the range of bubble-size distribution.A positive correlation exists between the bubble Sauter diameter and air-flow rate,with the bubble Sauter diameter bearing a negative correlation with the superficial water velocity and frother concentration.展开更多
This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and...This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.展开更多
Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger in...Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.展开更多
Tin is a critical metal for various industries,making its recovery from low-grade cassiterite ores crucial.This study aimed to optimize the flotation recovery of cassiterite using multi-component collector systems.Sev...Tin is a critical metal for various industries,making its recovery from low-grade cassiterite ores crucial.This study aimed to optimize the flotation recovery of cassiterite using multi-component collector systems.Several collectors were initially selected through micro-flotation tests,leading to the identification of optimal proportions for a four-component collector system(SHA-OHA-SPA-DBIA in a 4:3:2:1 ratio).Molecular dynamics simulations and surface tension tests were used to investigate the micellar behavior of these collectors in aqueous solution.The adsorption characteristics were quantified using microcalorimetry,enabling the determination of collection entropy and changes in Gibbs free energy.The four-component collector system showed the highest entropy change and the most favorable Gibbs free energy,leading to a cassiterite recovery of above 90%at a concentration of 8.0×10^(5)mol/L.Various analytical techniques were employed to systematically characterize the adsorption mechanism.The findings revealed a positive correlation between the adsorption products formed by the multicomponent collectors on the cassiterite surface and the entropy changes.Industrial-scale testing of the high-entropy collector system produced a tin concentrate with an Sn grade of 6.17%and an Sn recovery of 82.43%,demonstrating its substantial potential for practical applications in cassiterite flotation.展开更多
Gold ores in the Jiaozhou region of China are characterized by their abundant reserves,low grade,fine dissemination,and chal-lenges in upgrading.Froth flotation,with xanthate as the collector,is a commonly employed me...Gold ores in the Jiaozhou region of China are characterized by their abundant reserves,low grade,fine dissemination,and chal-lenges in upgrading.Froth flotation,with xanthate as the collector,is a commonly employed method for enriching auriferous pyrite from these ores.This study aimed to develop a more efficient flotation process by utilizing cavitation nanobubbles for a low-grade gold ore.Batch flotation tests demonstrated that nanobubbles significantly enhanced the flotation performance of auriferous pyrite,as evidenced by improved concentrate S and Au grades and their recoveries.The mechanisms underlying this enhancement were explored by investigat-ing surface nanobubble(SNB)formation,bulk nanobubble(BNB)attachment to hydrophobic pyrite surfaces,and nanobubble-induced agglomeration using atomic force microscopy(AFM)and focused beam reflectance measurement(FBRM).The results revealed that nan-obubble coverage on the pyrite surface is a critical factor influencing surface hydrophobicity and agglomeration.SNBs exhibited higher coverage on pyrite surfaces with increased surface hydrophobicity,flow rate,and cavitation time.Similarly,BNB attachment on pyrite surfaces was significantly increased with surface hydrophobicity and cavitation time.Enhanced surface hydrophobicity,along with higher flow rates and cavitation times,promoted pyrite particle agglomeration owing to the increased nanobubble coverage,ultimately leading to improved flotation performance.展开更多
The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of t...The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of this combined reagent was systematically investigated via contact angle measurements,AFM,FTIR,species distribution calculations,and DFT calculations.The results suggested that Ca(Ⅱ)exhibited the best selectivity for activating lepidolite flotation.SNOS was chemically adsorbed on the Ca(Ⅱ)-activated lepidolite surface with an adsorption energy of−1248.91 kJ/mol while a lower adsorption energy of−598.84 kJ/mol of SNOS on Ca(Ⅱ)-activated feldspar was calculated.Therefore,this combination of SNOS and Ca(Ⅱ)is a promising reagent scheme for the efficient recovery of lithium from aluminosilicate ore.展开更多
The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces...The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.展开更多
The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investi...The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investigates eco-friendly collectors’effectiveness in promoting sustainable mineral processing,guiding future alternatives to traditional reagents.The manuscript discussed the surface properties of apatite and its interaction with eco-friendly collectors,assessing existing fundamental studies.This study sought to:(1)define,organize,and classify“eco-friendly”collectors;(2)evaluate their effect in IEP and contact angle;(3)provide a better understanding of the adsorption behavior of the different fatty acid chains into apatite surface;(4)assess their ability to reversely and directly float apatite;(5)address gaps to achieve selectivity and process optimization.Outcomes demonstrated that fatty acids are largely applied,but other renewable sources of these reagents have been promisingly evaluated.In addition,other natural reagents have been tested,and new green synthetics have demonstrated synergistic effects when combined with fatty acids,yielding significant improvements in grade and recovery.However,collector effectiveness varies with ore characteristics,like particle size and surface properties,which remain underexplored.Future research should design tailored collectors that align with mineralogical differences to enhance selectivity.展开更多
Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectro...Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectroscopy.The results showed that copper minerals exhibited various forms and uneven particle sizes,while cobalt existed in the form of highly dispersed asbolane,and large amounts of easily slimed gangue minerals were filled in the samples,making it difficult to separate copper and cobalt minerals.The particle size range plays a decisive role in selecting the separation method for the copper−cobalt ore.Gravity separation was suitable for particles ranging from 43 to 246μm,while flotation was more effective for particles below 43μm.After ore grinding and particle size classification,applying a combined gravity separation(shaking table)−flotation method yielded concentrated minerals with a copper recovery of 72.83%and a cobalt recovery of 31.13%.展开更多
To investigate the mechanisms of how nanobubbles enhance the flotation separation performance of galena from pyrite,the effects of nanobubbles on the surface properties of galena and pyrite and the interactions betwee...To investigate the mechanisms of how nanobubbles enhance the flotation separation performance of galena from pyrite,the effects of nanobubbles on the surface properties of galena and pyrite and the interactions between mineral particles and air bubbles were examined in this study.Various analytical techniques,including focused beam reflectance measurement(FBRM),three-phase contact line(TPCL)analysis,atomic force microscopy(AFM),and contact angle measurement,were employed.It has been demonstrated that nanobubbles significantly enhanced the flotation recovery of galena and its flotation selectivity from pyrite,as compared to the conventional flotation process.The preferential formation of nanobubbles on the galena surface,which is more hydrophobic than pyrite surface,further increased the surface hydrophobicity and agglomeration of galena particles.The introduction of nanobubbles into the flotation system also increased in the maximum TPCL length and detachment length between the galena surface and bubbles,contributing to the enhanced flotation efficiency.展开更多
In order to reveal the effect of 2-hydroxy-3-naphthyl hydroxamic acid(H205)on the flotation behavior and action mechanism of bastnaesite,single-mineral flotation experiments of bastnaesite were conducted.The flotation...In order to reveal the effect of 2-hydroxy-3-naphthyl hydroxamic acid(H205)on the flotation behavior and action mechanism of bastnaesite,single-mineral flotation experiments of bastnaesite were conducted.The flotation recovery of bastnaesites can be achieved more than 90%when the aeration rate is 40 mL/min,the rotational speed is 200 r/min,the H205 dosage is 120 mg/L,and the pulp pH ranges from 7 to 9.The action mechanism of H205 on the surface of bastnaesite was studied by simultaneous thermogravimetry and differential scanning calorimetry(TG-DSC),Zeta potential measurements,Fourier transform-infrared spectra(FT-IR)and X-ray photoelectron spectroscopy(XPS).These analysis results show that under suitable flotation conditions,H205 has an obvious adsorption phenomenon on the surface of bastnaesite.The adsorption involves electrostatic interactions and chemical interactions,namely H205 has a strong collecting ability of bastnaesite due to the synergism of electrostatic adsorption and chemical adsorption.This study systematically reveals the flotation behavior and adsorption mechanism of H205 on the surface of bastnaesite,and provides useful theoretical guidance for efficient flotation separation of bastnaesite.展开更多
Hydrogen-based mineral phase transformation(HMPT)technology has demonstrated its effectiveness in separating iron and enriching rare earths from Bayan Obo refractory ores.However,further research is needed to clarify ...Hydrogen-based mineral phase transformation(HMPT)technology has demonstrated its effectiveness in separating iron and enriching rare earths from Bayan Obo refractory ores.However,further research is needed to clarify the phase composition and floatability of rare earths obtained after HMPT owing to the associated phase transformations.This study explored the mineralogical characteristics and separation behavior of rare earths in HMPT-treated iron tailings.Process mineralogy studies conducted via BGRIMM process mineralogy analysis and X-ray diffraction revealed that the main valuable minerals in the tailings included rare-earth oxides(9.15wt%),monazite(5.31wt%),and fluorite(23.52wt%).The study also examined the impact of mineral liberation and gangue mineral intergrowth on flotation performance.Flotation tests achieved a rare-earth oxide(REO)grade of 74.12wt% with a recovery of 34.17% in open-circuit flotation,whereas closed-circuit flotation resulted in a REO grade of 60.27wt% with a recovery of 73%.Transmission electron microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy revealed that monazite remained stable during the HMPT process,while bastnaesite was transformed into Ce_(7)O_(12)and CeF_(3),leading to increased collector consumption.Nonetheless,the HMPT process did not significantly affect the flotation performance of rare earths.The enrichment of fluorite in the tailings highlighted its further recovery potential.The integration of HMPT with magnetic separation and flotation presents an efficient strategy for recovering rare earths,iron,and fluorite from Bayan Obo ores.展开更多
In order to discuss the particle-bubble interaction during the electro-flotation of cassiterite,the recovery of cassiterite with different particle sizes was investigated,and the collision mechanism between the cassit...In order to discuss the particle-bubble interaction during the electro-flotation of cassiterite,the recovery of cassiterite with different particle sizes was investigated,and the collision mechanism between the cassiterite particles and H2 bubbles was explored.The flotation tests were carried out in a single bubble flotation cell.The results show that cassiterite particles 10 μm,10-20 μm,20?38 μm and 38-74 μm match with bubbles with size of 50-150 μm,about 250 μm,74 μm and 74 μm,respectively,and a better recovery can be obtained.It is demonstrated that the recovery of cassiterite is influenced by the size of cassiterite particles and bubbles.Furthermore,the probabilities of collision,adhesion,detachment and collection were calculated using the collision,attachment and collection models.Theoretical calculation results show that the collision probability decreases sharply with decreasing particle size and increasing bubble size(below 150 μm).The attachment probability would increase from the effective collision,leading to the increase of recovery.展开更多
In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their ...In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their systems and insufficient consideration of hydration and temperature effects,making it difficult to fully replicate the real flotation environment of chalcopyrite and pyrite.In this study,we employed the self-consistent charge density functional tight-binding(SCC-DFTB)parameterization method to develop a parameter set,CuFeOrg,which includes the interactions between Cu-Fe-C-H-O-N-S-P-Zn elements,to investigate the surface interactions in large-scale flotation systems of chalcopyrite and pyrite.The results of bulk modulus,atomic displacement,band structure,surface relaxation,surface Mulliken charge distribution,and adsorption tests of typical flotation reagents on mineral surfaces demonstrate that CuFeOrg achieves DFT-level accuracy while significantly outperforming DFT in computational efficiency.By constructing large-scale hydration systems of mineral surfaces,as well as large-scale systems incorporating the combined interactions of mineral surfaces,flotation reagents,and hydration,we more realistically reproduce the actual flotation environment.Furthermore,the dynamic analysis results are consistent with mineral surface contact angle experiments.Additionally,CuFeOrg lays the foundation for future studies of more complex and diverse chalcopyrite and pyrite flotation surface systems.展开更多
In this study,the effect of Cu^(2+)on the cassiterite and calcite flotation using octanohydroxamic acid(OHA)as collector was investigated through flotation tests,solution reaction tests and calculation,zeta potential ...In this study,the effect of Cu^(2+)on the cassiterite and calcite flotation using octanohydroxamic acid(OHA)as collector was investigated through flotation tests,solution reaction tests and calculation,zeta potential measurements,XPS analysis and residual reagent concentration measurements.Results indicated that Cu^(2+)played an activation role on cassiterite flotation but a depression role on calcite flotation.The copper cations were adsorbed on the cassiterite surface by forming a Cu—O bond,and the pre-adsorbed copper cations and the OHA-Cu complexes promoted the adsorption of OHA on the cassiterite surface.Thus,cassiterite flotation was activated.The dissolved HCO_(3)-in the calcite pulp underwent a double hydrolysis reaction with copper cations(Cu^(2+),CuOH^(+),Cu_(2)(OH)_(2)^(2+)and Cu_(3)(OH)_(4)^(2+))to form CuCO_(3).Some copper cations were adsorbed on the calcite surface as well,but some adsorbed Cu^(2+)on the calcite surface was desorbed by bonding with OHA,and most of OHA was consumed by Cu^(2+),basic copper carbonate and copper hydroxide.The residual OHA in the pulp was not sufficient for flotation,so calcite flotation was depressed.Finally,a model of the reaction mechanism of Cu^(2+)and OHA on the cassiterite and calcite surfaces was established.展开更多
Finding appropriate flotation reagents to separate copper-nickel sulfide ores from various magnesium silicate gangue minerals has always been a challenge in the mineral processing industry.This study introduced xantha...Finding appropriate flotation reagents to separate copper-nickel sulfide ores from various magnesium silicate gangue minerals has always been a challenge in the mineral processing industry.This study introduced xanthan gum(XG)as a non-toxic and environmentally friendly depressant of talc,olivine,and serpentine.The effects and mechanisms of XG on the aggregation and flotation behavior of talc,olivine and serpentine were investigated by flotation tests,sedimentation tests,IC-FBRM particle size analysis tests,adsorption quantity tests,Fourier transform infrared spectroscopy(FTIR)tests,X-ray photoelectron spectroscopy(XPS)analysis tests and Zeta potential tests.The flotation results indicated that when the three minerals were mixed,XG caused the talc-serpentine aggregation in the solution to shift to olivine-serpentine aggregation,with the remaining XG adsorbing on talc to depress its flotation.In addition,combining XPS and zeta potential tests,the-OH(hydroxyl)groups in XG molecules preferentially adsorbed on Mg sites on the surface of olivine through chemical bonding.The surface potential of olivine significantly shifted to a more negative value,with the negative charge on the olivine surface far exceeding that on the talc surface.This resulted in an increased aggregation effect between positively charged serpentine and negatively charged olivine due to enhanced electrostatic forces.展开更多
This study investigated the effect of konjac glucomannan(KGM)on the flotation separation of calcite and scheelite.Micro-flotation tests showed that under the action of 50 mg/L KGM,the floatability of calcite notably d...This study investigated the effect of konjac glucomannan(KGM)on the flotation separation of calcite and scheelite.Micro-flotation tests showed that under the action of 50 mg/L KGM,the floatability of calcite notably decreased,while the impact on scheelite was negligible,resulting in a recovery difference of 82.53%.Fourier transform infrared(FTIR)spectroscopy and atomic force micro-scopy(AFM)analyses indicated the selective adsorption of KGM on the calcite surface.Test results of the zeta potential and UV-visible absorption spectroscopy revealed that KGM prevented the adsorption of sodium oleate on the calcite surface.X-ray photoelectron spec-troscopy(XPS)analysis further confirmed the chemical adsorption of KGM on the calcite surface and the formation of Ca(OH)_(2).The density functional theory(DFT)simulation results were consistent with the flotation tests,demonstrating the strong adsorption perform-ance of KGM on the calcite surface.This study offers a pathway for highly sustainable and cost-effective mineral processing by utilizing the unique properties of biopolymers such as KGM to separate valuable minerals from gangue minerals.展开更多
The flotation separation of cassiterite and dravite was realized using lead complexes of benzohydroxamic acid(Pb-BHA)as a collector and sodium fluosilicate(SF)as a depressant.Zeta potential tests confirmed that SF ena...The flotation separation of cassiterite and dravite was realized using lead complexes of benzohydroxamic acid(Pb-BHA)as a collector and sodium fluosilicate(SF)as a depressant.Zeta potential tests confirmed that SF enabled the selective depression of dravite.The results of Fourier transform infrared(FTIR)spectroscopy analysis demonstrated that hydroxyl-containing groups in the hydrolysis products of SF selectively chemisorbed on the surface of dravite.X-ray photoelectron spectroscopy(XPS)analysis results further demonstrated the strong chemisorption of SF hydrolysis products(F-containing groups and hydroxyl-containing groups)on dravite(Mg sites).Consequently,the adsorption of Pb-BHA on dravite was selectively prevented.Based on the results,a selective depression model of SF on cassiterite and dravite was proposed.展开更多
基金financially supported by the Excellent Youth Scholars Program of State Key Laboratory of Complex Nonferrous Metal Resource Clean Utilization,Kunming University of Science and Technology,China(No.YXQN-2024003)the Central Government-Guided Local Science and Technology Development Fund Project,China(No.202407AB110022)。
文摘The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient utilization of lepidolite as a lithium source.Therefore,the processes for the flotation of lepidolite have been studied in depth,particularly the development and use of lepidolite flotation collectors and the action mechanism of the collectors on the lepidolite surface.Based on the crystal-structure characteristics of lepidolite minerals,this review focuses on the application of anionic collectors,amine cationic collectors(primary amines,quaternary ammonium salts,ether amines,and Gemini amines),and combined collectors to the flotation behavior of lepidolite as well as the adsorption mechanisms.New directions and technologies for the controllable flotation of lepidolite are proposed,including process improvement,reagent synthesis,and mechanistic research.This analysis demonstrates the need for the further study of the complex environment inside lepidolite and pulp.By using modern analytical detection methods and quantum chemical calculations,research on reagents for the flotation of lepidolite has expanded,providing new concepts and references for the efficient flotation recovery and utilization of lepidolite.
基金financially supported by the National Natural Science Foundation of China(No.52374259)the Open Fund of the State Key Laboratory of Mineral Processing Science and Technology,China(No.BGRIMM-KJSKL-2023-11)the Major Science and Technology Projects in Yunnan Province,China(No.202302 AF080004)。
文摘It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.
基金supported by the National Key R&D Program of China(Nos.2023YFC3904202,2022YFC2904500)Major Science and Technology Program of Yunnan Province,China(No.202202AB080012).
文摘The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters such as superficial water velocity,air-flow rate,and frother dosage on bubble-size and distribution characteristics were investigated.This study aims to provide theoretical support for enabling fluidized-bed flotation within coarse-particle flotation columns.The results show that negative pressure for air inspiratory and bubble formation is generated by passing a high-speed jet through a throat,and the greatest number of bubbles are observed under natural inspiratory state at an air-liquid ratio of 1:3-1:2.5.Increasing the air-flow rate transforms the bubble diameter distribution from a peaked distribution to a more uniform distribution.Furthermore,the frother narrows the range of bubble-size distribution.A positive correlation exists between the bubble Sauter diameter and air-flow rate,with the bubble Sauter diameter bearing a negative correlation with the superficial water velocity and frother concentration.
基金financially supported by the National Key Research and Development Plan of China(No.2022YFC2904603)the National Natural Science Foundation of China(No.52174268)。
文摘This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.
基金supported by Fundamental Research Projects of Yunnan Province,China(Nos.202101BE070001-009,202301AU070189).
文摘Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.
基金supported by Yunnan Science and Technology Leading Talent Project(No.202305AB350005)。
文摘Tin is a critical metal for various industries,making its recovery from low-grade cassiterite ores crucial.This study aimed to optimize the flotation recovery of cassiterite using multi-component collector systems.Several collectors were initially selected through micro-flotation tests,leading to the identification of optimal proportions for a four-component collector system(SHA-OHA-SPA-DBIA in a 4:3:2:1 ratio).Molecular dynamics simulations and surface tension tests were used to investigate the micellar behavior of these collectors in aqueous solution.The adsorption characteristics were quantified using microcalorimetry,enabling the determination of collection entropy and changes in Gibbs free energy.The four-component collector system showed the highest entropy change and the most favorable Gibbs free energy,leading to a cassiterite recovery of above 90%at a concentration of 8.0×10^(5)mol/L.Various analytical techniques were employed to systematically characterize the adsorption mechanism.The findings revealed a positive correlation between the adsorption products formed by the multicomponent collectors on the cassiterite surface and the entropy changes.Industrial-scale testing of the high-entropy collector system produced a tin concentrate with an Sn grade of 6.17%and an Sn recovery of 82.43%,demonstrating its substantial potential for practical applications in cassiterite flotation.
基金support from the National Natural Science Foundation of China(No.52204274)the Shandong Provincial Natural Science Foundation,China(No.ZR2021QE122)+1 种基金Shandong Provincial Department of Science and Technology Key Project,China(No.2023TZXD021)Shandong Provincial Department of Science and Technology,China(No.ZTYJY-KY-2033-11).
文摘Gold ores in the Jiaozhou region of China are characterized by their abundant reserves,low grade,fine dissemination,and chal-lenges in upgrading.Froth flotation,with xanthate as the collector,is a commonly employed method for enriching auriferous pyrite from these ores.This study aimed to develop a more efficient flotation process by utilizing cavitation nanobubbles for a low-grade gold ore.Batch flotation tests demonstrated that nanobubbles significantly enhanced the flotation performance of auriferous pyrite,as evidenced by improved concentrate S and Au grades and their recoveries.The mechanisms underlying this enhancement were explored by investigat-ing surface nanobubble(SNB)formation,bulk nanobubble(BNB)attachment to hydrophobic pyrite surfaces,and nanobubble-induced agglomeration using atomic force microscopy(AFM)and focused beam reflectance measurement(FBRM).The results revealed that nan-obubble coverage on the pyrite surface is a critical factor influencing surface hydrophobicity and agglomeration.SNBs exhibited higher coverage on pyrite surfaces with increased surface hydrophobicity,flow rate,and cavitation time.Similarly,BNB attachment on pyrite surfaces was significantly increased with surface hydrophobicity and cavitation time.Enhanced surface hydrophobicity,along with higher flow rates and cavitation times,promoted pyrite particle agglomeration owing to the increased nanobubble coverage,ultimately leading to improved flotation performance.
基金financial support from the National Natural Science Foundation of China(Nos.U2067201,52204300)the National 111 Project,China(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0297).
文摘The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of this combined reagent was systematically investigated via contact angle measurements,AFM,FTIR,species distribution calculations,and DFT calculations.The results suggested that Ca(Ⅱ)exhibited the best selectivity for activating lepidolite flotation.SNOS was chemically adsorbed on the Ca(Ⅱ)-activated lepidolite surface with an adsorption energy of−1248.91 kJ/mol while a lower adsorption energy of−598.84 kJ/mol of SNOS on Ca(Ⅱ)-activated feldspar was calculated.Therefore,this combination of SNOS and Ca(Ⅱ)is a promising reagent scheme for the efficient recovery of lithium from aluminosilicate ore.
基金supported by the National Key Research and Development Program of China(No.2019YFC1803501)the National Natural Science Foundation of China(No.52074357)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ30713)the Vanadium Titanium Union Foundationthe Project of Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources,Ministry of Natural Resources,China。
文摘The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.
基金financially supported by CAMM(Center of Advanced Mining and Metallurgy/Green Flotation),as a center of excellence at the Luleå University of Technology.
文摘The global reliance on phosphate rock for agriculture and other industries,coupled with chemical regulations in developed countries,has driven the search for green alternatives in apatite flotation.This review investigates eco-friendly collectors’effectiveness in promoting sustainable mineral processing,guiding future alternatives to traditional reagents.The manuscript discussed the surface properties of apatite and its interaction with eco-friendly collectors,assessing existing fundamental studies.This study sought to:(1)define,organize,and classify“eco-friendly”collectors;(2)evaluate their effect in IEP and contact angle;(3)provide a better understanding of the adsorption behavior of the different fatty acid chains into apatite surface;(4)assess their ability to reversely and directly float apatite;(5)address gaps to achieve selectivity and process optimization.Outcomes demonstrated that fatty acids are largely applied,but other renewable sources of these reagents have been promisingly evaluated.In addition,other natural reagents have been tested,and new green synthetics have demonstrated synergistic effects when combined with fatty acids,yielding significant improvements in grade and recovery.However,collector effectiveness varies with ore characteristics,like particle size and surface properties,which remain underexplored.Future research should design tailored collectors that align with mineralogical differences to enhance selectivity.
基金National Key Research and Development Program of China(No.2020YFC1909202)Major Science and Technology Program of Yunnan Province,China(No.202202AB080012)for financial support。
文摘Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectroscopy.The results showed that copper minerals exhibited various forms and uneven particle sizes,while cobalt existed in the form of highly dispersed asbolane,and large amounts of easily slimed gangue minerals were filled in the samples,making it difficult to separate copper and cobalt minerals.The particle size range plays a decisive role in selecting the separation method for the copper−cobalt ore.Gravity separation was suitable for particles ranging from 43 to 246μm,while flotation was more effective for particles below 43μm.After ore grinding and particle size classification,applying a combined gravity separation(shaking table)−flotation method yielded concentrated minerals with a copper recovery of 72.83%and a cobalt recovery of 31.13%.
基金financial support from the Major Science and Technology Special Project of Yunnan Province,China(No.202302AB080012)the National Natural Science Foundation of China(No.52204274)the Shandong Provincial Natural Science Foundation,China(No.ZR2021QE122).
文摘To investigate the mechanisms of how nanobubbles enhance the flotation separation performance of galena from pyrite,the effects of nanobubbles on the surface properties of galena and pyrite and the interactions between mineral particles and air bubbles were examined in this study.Various analytical techniques,including focused beam reflectance measurement(FBRM),three-phase contact line(TPCL)analysis,atomic force microscopy(AFM),and contact angle measurement,were employed.It has been demonstrated that nanobubbles significantly enhanced the flotation recovery of galena and its flotation selectivity from pyrite,as compared to the conventional flotation process.The preferential formation of nanobubbles on the galena surface,which is more hydrophobic than pyrite surface,further increased the surface hydrophobicity and agglomeration of galena particles.The introduction of nanobubbles into the flotation system also increased in the maximum TPCL length and detachment length between the galena surface and bubbles,contributing to the enhanced flotation efficiency.
基金Project supported by the Natural Science Foundation Innovation Group Project of Hubei Province(2023AFA044)the National Natural Science Foundation of China(52222405)+1 种基金the Science and Technology Research Project of Education Department of Hubei Province(Q20221505)the China Postdoctoral Science(2023M731041)。
文摘In order to reveal the effect of 2-hydroxy-3-naphthyl hydroxamic acid(H205)on the flotation behavior and action mechanism of bastnaesite,single-mineral flotation experiments of bastnaesite were conducted.The flotation recovery of bastnaesites can be achieved more than 90%when the aeration rate is 40 mL/min,the rotational speed is 200 r/min,the H205 dosage is 120 mg/L,and the pulp pH ranges from 7 to 9.The action mechanism of H205 on the surface of bastnaesite was studied by simultaneous thermogravimetry and differential scanning calorimetry(TG-DSC),Zeta potential measurements,Fourier transform-infrared spectra(FT-IR)and X-ray photoelectron spectroscopy(XPS).These analysis results show that under suitable flotation conditions,H205 has an obvious adsorption phenomenon on the surface of bastnaesite.The adsorption involves electrostatic interactions and chemical interactions,namely H205 has a strong collecting ability of bastnaesite due to the synergism of electrostatic adsorption and chemical adsorption.This study systematically reveals the flotation behavior and adsorption mechanism of H205 on the surface of bastnaesite,and provides useful theoretical guidance for efficient flotation separation of bastnaesite.
基金the financial support received from the Key Program of National Natural Science Foundation of China(No.52130406)the National Key R&D Program of China(Nos.2021YFC2901000 and 2022YFC2905800)+1 种基金the General Program of National Natural Science Foundation of China(No.52274253)Natural Science Foundation Innovation Group Project of Hubei Province,China(No.2023AFA044)。
文摘Hydrogen-based mineral phase transformation(HMPT)technology has demonstrated its effectiveness in separating iron and enriching rare earths from Bayan Obo refractory ores.However,further research is needed to clarify the phase composition and floatability of rare earths obtained after HMPT owing to the associated phase transformations.This study explored the mineralogical characteristics and separation behavior of rare earths in HMPT-treated iron tailings.Process mineralogy studies conducted via BGRIMM process mineralogy analysis and X-ray diffraction revealed that the main valuable minerals in the tailings included rare-earth oxides(9.15wt%),monazite(5.31wt%),and fluorite(23.52wt%).The study also examined the impact of mineral liberation and gangue mineral intergrowth on flotation performance.Flotation tests achieved a rare-earth oxide(REO)grade of 74.12wt% with a recovery of 34.17% in open-circuit flotation,whereas closed-circuit flotation resulted in a REO grade of 60.27wt% with a recovery of 73%.Transmission electron microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy revealed that monazite remained stable during the HMPT process,while bastnaesite was transformed into Ce_(7)O_(12)and CeF_(3),leading to increased collector consumption.Nonetheless,the HMPT process did not significantly affect the flotation performance of rare earths.The enrichment of fluorite in the tailings highlighted its further recovery potential.The integration of HMPT with magnetic separation and flotation presents an efficient strategy for recovering rare earths,iron,and fluorite from Bayan Obo ores.
基金Project(50774094)supported by the National Natural Science Foundation of ChinaProject(2010CB630905)supported by the National Basic Research Program of China
文摘In order to discuss the particle-bubble interaction during the electro-flotation of cassiterite,the recovery of cassiterite with different particle sizes was investigated,and the collision mechanism between the cassiterite particles and H2 bubbles was explored.The flotation tests were carried out in a single bubble flotation cell.The results show that cassiterite particles 10 μm,10-20 μm,20?38 μm and 38-74 μm match with bubbles with size of 50-150 μm,about 250 μm,74 μm and 74 μm,respectively,and a better recovery can be obtained.It is demonstrated that the recovery of cassiterite is influenced by the size of cassiterite particles and bubbles.Furthermore,the probabilities of collision,adhesion,detachment and collection were calculated using the collision,attachment and collection models.Theoretical calculation results show that the collision probability decreases sharply with decreasing particle size and increasing bubble size(below 150 μm).The attachment probability would increase from the effective collision,leading to the increase of recovery.
基金supported by the National Natural Science Foundation of China(No.52374264)the National Key Technologies Research and Development Program of China(No.2024YFC2909600)the Major Science and Technology Projects in Yunnan Province(No.202402AB080010).
文摘In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their systems and insufficient consideration of hydration and temperature effects,making it difficult to fully replicate the real flotation environment of chalcopyrite and pyrite.In this study,we employed the self-consistent charge density functional tight-binding(SCC-DFTB)parameterization method to develop a parameter set,CuFeOrg,which includes the interactions between Cu-Fe-C-H-O-N-S-P-Zn elements,to investigate the surface interactions in large-scale flotation systems of chalcopyrite and pyrite.The results of bulk modulus,atomic displacement,band structure,surface relaxation,surface Mulliken charge distribution,and adsorption tests of typical flotation reagents on mineral surfaces demonstrate that CuFeOrg achieves DFT-level accuracy while significantly outperforming DFT in computational efficiency.By constructing large-scale hydration systems of mineral surfaces,as well as large-scale systems incorporating the combined interactions of mineral surfaces,flotation reagents,and hydration,we more realistically reproduce the actual flotation environment.Furthermore,the dynamic analysis results are consistent with mineral surface contact angle experiments.Additionally,CuFeOrg lays the foundation for future studies of more complex and diverse chalcopyrite and pyrite flotation surface systems.
基金Project(52074355)supported by the National Natural Science Foundation of ChinaProject(2023JJ10070)supported by the Outstanding Youth Scientist Foundation of Hunan Province,China。
文摘In this study,the effect of Cu^(2+)on the cassiterite and calcite flotation using octanohydroxamic acid(OHA)as collector was investigated through flotation tests,solution reaction tests and calculation,zeta potential measurements,XPS analysis and residual reagent concentration measurements.Results indicated that Cu^(2+)played an activation role on cassiterite flotation but a depression role on calcite flotation.The copper cations were adsorbed on the cassiterite surface by forming a Cu—O bond,and the pre-adsorbed copper cations and the OHA-Cu complexes promoted the adsorption of OHA on the cassiterite surface.Thus,cassiterite flotation was activated.The dissolved HCO_(3)-in the calcite pulp underwent a double hydrolysis reaction with copper cations(Cu^(2+),CuOH^(+),Cu_(2)(OH)_(2)^(2+)and Cu_(3)(OH)_(4)^(2+))to form CuCO_(3).Some copper cations were adsorbed on the calcite surface as well,but some adsorbed Cu^(2+)on the calcite surface was desorbed by bonding with OHA,and most of OHA was consumed by Cu^(2+),basic copper carbonate and copper hydroxide.The residual OHA in the pulp was not sufficient for flotation,so calcite flotation was depressed.Finally,a model of the reaction mechanism of Cu^(2+)and OHA on the cassiterite and calcite surfaces was established.
基金Project(52264022)supported by the National Natural Science Foundation of ChinaProject(BGRIMM-KJSKL-2025-17)supported by the Open Foundation of State Key Laboratory of Mineral Processing,China。
文摘Finding appropriate flotation reagents to separate copper-nickel sulfide ores from various magnesium silicate gangue minerals has always been a challenge in the mineral processing industry.This study introduced xanthan gum(XG)as a non-toxic and environmentally friendly depressant of talc,olivine,and serpentine.The effects and mechanisms of XG on the aggregation and flotation behavior of talc,olivine and serpentine were investigated by flotation tests,sedimentation tests,IC-FBRM particle size analysis tests,adsorption quantity tests,Fourier transform infrared spectroscopy(FTIR)tests,X-ray photoelectron spectroscopy(XPS)analysis tests and Zeta potential tests.The flotation results indicated that when the three minerals were mixed,XG caused the talc-serpentine aggregation in the solution to shift to olivine-serpentine aggregation,with the remaining XG adsorbing on talc to depress its flotation.In addition,combining XPS and zeta potential tests,the-OH(hydroxyl)groups in XG molecules preferentially adsorbed on Mg sites on the surface of olivine through chemical bonding.The surface potential of olivine significantly shifted to a more negative value,with the negative charge on the olivine surface far exceeding that on the talc surface.This resulted in an increased aggregation effect between positively charged serpentine and negatively charged olivine due to enhanced electrostatic forces.
基金supported by the National Natural Science Foundation of China(No.52164022).
文摘This study investigated the effect of konjac glucomannan(KGM)on the flotation separation of calcite and scheelite.Micro-flotation tests showed that under the action of 50 mg/L KGM,the floatability of calcite notably decreased,while the impact on scheelite was negligible,resulting in a recovery difference of 82.53%.Fourier transform infrared(FTIR)spectroscopy and atomic force micro-scopy(AFM)analyses indicated the selective adsorption of KGM on the calcite surface.Test results of the zeta potential and UV-visible absorption spectroscopy revealed that KGM prevented the adsorption of sodium oleate on the calcite surface.X-ray photoelectron spec-troscopy(XPS)analysis further confirmed the chemical adsorption of KGM on the calcite surface and the formation of Ca(OH)_(2).The density functional theory(DFT)simulation results were consistent with the flotation tests,demonstrating the strong adsorption perform-ance of KGM on the calcite surface.This study offers a pathway for highly sustainable and cost-effective mineral processing by utilizing the unique properties of biopolymers such as KGM to separate valuable minerals from gangue minerals.
基金supported by the National Natural Science Foundation of China(No.52122406)the National Key Research Center and Development Program of the 14th Five-year Plan of China(Nos.2022YFC2905104,2022YFC2905105).
文摘The flotation separation of cassiterite and dravite was realized using lead complexes of benzohydroxamic acid(Pb-BHA)as a collector and sodium fluosilicate(SF)as a depressant.Zeta potential tests confirmed that SF enabled the selective depression of dravite.The results of Fourier transform infrared(FTIR)spectroscopy analysis demonstrated that hydroxyl-containing groups in the hydrolysis products of SF selectively chemisorbed on the surface of dravite.X-ray photoelectron spectroscopy(XPS)analysis results further demonstrated the strong chemisorption of SF hydrolysis products(F-containing groups and hydroxyl-containing groups)on dravite(Mg sites).Consequently,the adsorption of Pb-BHA on dravite was selectively prevented.Based on the results,a selective depression model of SF on cassiterite and dravite was proposed.