Active rods propelled along their long axis align their velocities and orientations simultaneously in collision.However,as the propulsion is perpendicular to the long axis,velocity alignment becomes dynamically diffic...Active rods propelled along their long axis align their velocities and orientations simultaneously in collision.However,as the propulsion is perpendicular to the long axis,velocity alignment becomes dynamically difficult.Here,we show that ellipsoidal Quincke roller propelled along their short-axis(perpendicular to the long axis)can align their velocities by flipping and form flocking with nematic order.The flipping arises from the reversible transition between the static parallel spinless state and the spinning transversal state of ellipsoidal Quincke rollers.This is possible only near(above)the critical field where both the parallel spinless state and the spinning transversal spinning are metastable.The flipping-facilitated alignment offers an extra aligning mechanism for elongate active agents,and the resulting active liquid crystals serve a model system to explore the defect dynamics as the propulsion deviates from the local nematic orientation which has not been addressed yet.展开更多
In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on pe...In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate.展开更多
Multiple mobile agents with double integrator dynamics, following a leader to achieve a flocking motion formation, are studied in this paper. A class of local control laws for a group of mobile agents is proposed. Fro...Multiple mobile agents with double integrator dynamics, following a leader to achieve a flocking motion formation, are studied in this paper. A class of local control laws for a group of mobile agents is proposed. From a theoretical proof, the following conclusions are reached: (i) agents globally align their velocity vectors with a leader, (ii) they converge their velocities to the leaders velocity, (iii) collisions among interconnected agents are avoided, and (iv) agent's artificial potential functions are minimized. We model the interaction and/or communication relationship between agents by algebraic graph theory. Stability analysis is achieved by using classical Lyapunov theory in a fixed network topology, and differential inclusions and nonsmooth analysis in a switching network topology respectively. Simulation examples are provided.展开更多
This paper considers a multiple unmanned aerial vehicles (UAV) formation problem and proposes a new method inspired by bird flocking and foraging behavior. A bidirectional communication network, a navigator based on...This paper considers a multiple unmanned aerial vehicles (UAV) formation problem and proposes a new method inspired by bird flocking and foraging behavior. A bidirectional communication network, a navigator based on bird foraging behavior, a controller based on bird interaction and a movement switch are developed for multi-UAV formation. Lyapunov's second method and mechanical energy method are adopted for stability analysis. Parameters of the controller are optimized by Levy-flight based pigeon inspired optimization (Levy-PIO). Patrol missions along a square and an S shaped trajectory are designed to test this formation method. Simula- tions prove that the bird flocking and foraging strategy can accomplish the mission and obtain satisfying performance.展开更多
Most existing flocking algorithms assume one single virtual leader and rely on information on both relative positions and relative velocities among neighboring agents.In this paper,the problem of controlling a flock o...Most existing flocking algorithms assume one single virtual leader and rely on information on both relative positions and relative velocities among neighboring agents.In this paper,the problem of controlling a flock of mobile autonomous agents to follow multiple virtual leaders is investigated by using only position information in the sense that agents with the same virtual leader asymptotically attain the same velocity and track the corresponding virtual leader based on only position measurements.A flocking algorithm is proposed under which every agent asymptotically attains its desired velocity,collision between agents can be avoided,and the final tight formation minimizes all agents' global potentials.A simulation example is presented to verify and illustrate the theoretical results.展开更多
We consider the problem of controlling a group of mobile agents to form a designated formation while flocking within a constrained environment. We first propose a potential field based method to drive the agents to mo...We consider the problem of controlling a group of mobile agents to form a designated formation while flocking within a constrained environment. We first propose a potential field based method to drive the agents to move in connection with their neighbors, and regulate their relative positions to achieve the specific formation. The communication topology is preserved during the motion. We then extend the method to flocking with environmental constraints. Stability properties are analyzed to guarantee that all agents eventually form the desired formation while flocking, and flock safely without collision with the environment boundary. We verify our algorithm through simulations on a group of agents performing maximum coverage flocking and traveling through an unknown constrained environment.展开更多
Current applications using single unmanned vehicle have been gradually extended to multiple ones due to their increased efficiency in mission accomplishment, expanded coverage areas and ranges, as well as enhanced sys...Current applications using single unmanned vehicle have been gradually extended to multiple ones due to their increased efficiency in mission accomplishment, expanded coverage areas and ranges, as well as enhanced system reliability. This paper presents a flocking control method with application to a fleet of unmanned quadrotor helicopters (UQHs). Three critical characteristics of formation keeping, collision avoidance, and velocity matching have been taken into account in the algorithm development to make it capable of accomplishing the desired objectives (like forest/pipeline surveillance) by safely and efficiently operating a group of UQHs. To achieve these, three layered system design philosophy is considered in this study. The first layer is the flocking controller which is designed based on the kinematics of UQH. The modified Cucker and Smale model is used for guaranteeing the convergence of UQHs to flocking, while a repelling force between each two UQHs is also added for ensuring a specified safety distance. The second layer is the motion controller which is devised based on the kinetics of UQH by employing the augmented state-feedback control approach to greatly minimize the steady-state error. The last layer is the UQH system along with its actuators. Two primary contributions have been made in this work: first, different from most of the existing works conducted on agents with double integrator dynamics, a new flocking control algorithm has been designed and implemented on a group of UQHs with nonlinear dynamics. Furthermore, the constraint of fixed neighbouring distance in formation has been relaxed expecting to significantly reduce the complexity caused by the increase of agents number and provide more flexibility to the formation control. Extensive numerical simulations on a group of UQH nonlinear models have been carried out to verify the effectiveness of the proposed method.展开更多
There are many interesting flocking phenomena in nature,such as joint predation and group migration,and the intrinsic communication patterns of flocking are essential for studying group behavior.Traditional models of ...There are many interesting flocking phenomena in nature,such as joint predation and group migration,and the intrinsic communication patterns of flocking are essential for studying group behavior.Traditional models of communication such as the pigeon flock model and the wolf pack model define all agents within a perceptual distance as the neighborhoods,and some models have fixed communicating numbers.There is a significant impact on the quality of the flocking formation when encountering poor initial state of the flocking,multiple obstacles,or loss of certain agents.To solve this problem,this paper proposes a local communication model with nearest agents in four directions.Based on this model and behavioral method,two distributed flocking formation algorithms are designed in this paper for different scenarios,namely the flocking algorithm and the circular formation algorithm.Numerical simulation results show that the flocking can pass through the obstacle area and re-formation smoothly,and also the formation quality of the flocking is better compared with the traditional communication model.展开更多
We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theor...We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theorem. Besides, by counterexample we prove that Huang-Wang’s energy condition is also necessary for our nonhomogeneous system.展开更多
Existing coupled distributed estimation and motion control strategies of mobile sensor networks present limitations in velocity-varying target tracking. Therefore, a velocity-varying target tracking algorithm based on...Existing coupled distributed estimation and motion control strategies of mobile sensor networks present limitations in velocity-varying target tracking. Therefore, a velocity-varying target tracking algorithm based on flocking control is proposed herein. The Kalman-consensus filter is utilized to estimate the position, velocity and acceleration of a target. The flocking control algorithm with a velocity-varying virtual leader enables the position of the center of the mobile sensor network to converge to that of the target. By applying an effective cascading Lyapunov method, stability analysis is performed. Simulation results are provided to validate the feasibility of the proposed algorithm.展开更多
This paper is mainly devoted to the flocking of a class of swarm with fixed topology in a changing environment. Firstly, the controller for each agent is proposed by employing the error terms between the state of the ...This paper is mainly devoted to the flocking of a class of swarm with fixed topology in a changing environment. Firstly, the controller for each agent is proposed by employing the error terms between the state of the agent and the average state of its neighbors. Secondly, a sufficient condition for the swarm to achieve flocking is presented under assumptions that the gradient of the environment is bounded and the initial position graph is connected. Thirdly, as the environment is a plane, it is further proved that the velocity of each agent finally converges to the velocity of the swarm center although not one agent knows where the center of the group is. Finally, numerical examples are included to illustrate the obtained results.展开更多
This paper investigates the flocking problem in multi-agent system with time-varying delay and a virtual leader. Each agent here is subject to nonlinear dynamics. For the system, the corresponding algorithm with time-...This paper investigates the flocking problem in multi-agent system with time-varying delay and a virtual leader. Each agent here is subject to nonlinear dynamics. For the system, the corresponding algorithm with time-varying delay is proposed. Under the assumption that the initial network is connected, it is proved that the distance between agents is in the desired distance. The theoretical deduction shows that the stable flocking motion is achieved.展开更多
基金financial support of the National Natural Science Foundation of China(Grant No.11974255)。
文摘Active rods propelled along their long axis align their velocities and orientations simultaneously in collision.However,as the propulsion is perpendicular to the long axis,velocity alignment becomes dynamically difficult.Here,we show that ellipsoidal Quincke roller propelled along their short-axis(perpendicular to the long axis)can align their velocities by flipping and form flocking with nematic order.The flipping arises from the reversible transition between the static parallel spinless state and the spinning transversal state of ellipsoidal Quincke rollers.This is possible only near(above)the critical field where both the parallel spinless state and the spinning transversal spinning are metastable.The flipping-facilitated alignment offers an extra aligning mechanism for elongate active agents,and the resulting active liquid crystals serve a model system to explore the defect dynamics as the propulsion deviates from the local nematic orientation which has not been addressed yet.
文摘In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate.
基金This work was supported in part by the NSFC (No.60274020) and the NSFC International Collaborative Project (No.60340420431).
文摘Multiple mobile agents with double integrator dynamics, following a leader to achieve a flocking motion formation, are studied in this paper. A class of local control laws for a group of mobile agents is proposed. From a theoretical proof, the following conclusions are reached: (i) agents globally align their velocity vectors with a leader, (ii) they converge their velocities to the leaders velocity, (iii) collisions among interconnected agents are avoided, and (iv) agent's artificial potential functions are minimized. We model the interaction and/or communication relationship between agents by algebraic graph theory. Stability analysis is achieved by using classical Lyapunov theory in a fixed network topology, and differential inclusions and nonsmooth analysis in a switching network topology respectively. Simulation examples are provided.
文摘This paper considers a multiple unmanned aerial vehicles (UAV) formation problem and proposes a new method inspired by bird flocking and foraging behavior. A bidirectional communication network, a navigator based on bird foraging behavior, a controller based on bird interaction and a movement switch are developed for multi-UAV formation. Lyapunov's second method and mechanical energy method are adopted for stability analysis. Parameters of the controller are optimized by Levy-flight based pigeon inspired optimization (Levy-PIO). Patrol missions along a square and an S shaped trajectory are designed to test this formation method. Simula- tions prove that the bird flocking and foraging strategy can accomplish the mission and obtain satisfying performance.
基金Supported by the National Natural Science Foundation of China under Grant No.61104140the Fundamental Research Funds for the Central Universities HUST under Grant Nos.2011JC055 and 20112292+1 种基金the Research Fund for the Doctoral Program of Higher Education (RFDP) under Grant No.20100142120023Natural Science Foundation of Hubei Province of China under Grant No.2011CDB042
文摘Most existing flocking algorithms assume one single virtual leader and rely on information on both relative positions and relative velocities among neighboring agents.In this paper,the problem of controlling a flock of mobile autonomous agents to follow multiple virtual leaders is investigated by using only position information in the sense that agents with the same virtual leader asymptotically attain the same velocity and track the corresponding virtual leader based on only position measurements.A flocking algorithm is proposed under which every agent asymptotically attains its desired velocity,collision between agents can be avoided,and the final tight formation minimizes all agents' global potentials.A simulation example is presented to verify and illustrate the theoretical results.
文摘We consider the problem of controlling a group of mobile agents to form a designated formation while flocking within a constrained environment. We first propose a potential field based method to drive the agents to move in connection with their neighbors, and regulate their relative positions to achieve the specific formation. The communication topology is preserved during the motion. We then extend the method to flocking with environmental constraints. Stability properties are analyzed to guarantee that all agents eventually form the desired formation while flocking, and flock safely without collision with the environment boundary. We verify our algorithm through simulations on a group of agents performing maximum coverage flocking and traveling through an unknown constrained environment.
文摘Current applications using single unmanned vehicle have been gradually extended to multiple ones due to their increased efficiency in mission accomplishment, expanded coverage areas and ranges, as well as enhanced system reliability. This paper presents a flocking control method with application to a fleet of unmanned quadrotor helicopters (UQHs). Three critical characteristics of formation keeping, collision avoidance, and velocity matching have been taken into account in the algorithm development to make it capable of accomplishing the desired objectives (like forest/pipeline surveillance) by safely and efficiently operating a group of UQHs. To achieve these, three layered system design philosophy is considered in this study. The first layer is the flocking controller which is designed based on the kinematics of UQH. The modified Cucker and Smale model is used for guaranteeing the convergence of UQHs to flocking, while a repelling force between each two UQHs is also added for ensuring a specified safety distance. The second layer is the motion controller which is devised based on the kinetics of UQH by employing the augmented state-feedback control approach to greatly minimize the steady-state error. The last layer is the UQH system along with its actuators. Two primary contributions have been made in this work: first, different from most of the existing works conducted on agents with double integrator dynamics, a new flocking control algorithm has been designed and implemented on a group of UQHs with nonlinear dynamics. Furthermore, the constraint of fixed neighbouring distance in formation has been relaxed expecting to significantly reduce the complexity caused by the increase of agents number and provide more flexibility to the formation control. Extensive numerical simulations on a group of UQH nonlinear models have been carried out to verify the effectiveness of the proposed method.
基金Jilin Province Development and Reform Commission under Grant[2020C018-2]Jilin Province Key R&D Plan Project under Grant[20200401113GX].
文摘There are many interesting flocking phenomena in nature,such as joint predation and group migration,and the intrinsic communication patterns of flocking are essential for studying group behavior.Traditional models of communication such as the pigeon flock model and the wolf pack model define all agents within a perceptual distance as the neighborhoods,and some models have fixed communicating numbers.There is a significant impact on the quality of the flocking formation when encountering poor initial state of the flocking,multiple obstacles,or loss of certain agents.To solve this problem,this paper proposes a local communication model with nearest agents in four directions.Based on this model and behavioral method,two distributed flocking formation algorithms are designed in this paper for different scenarios,namely the flocking algorithm and the circular formation algorithm.Numerical simulation results show that the flocking can pass through the obstacle area and re-formation smoothly,and also the formation quality of the flocking is better compared with the traditional communication model.
文摘We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theorem. Besides, by counterexample we prove that Huang-Wang’s energy condition is also necessary for our nonhomogeneous system.
基金the National Natural Science Foundation of China(No.61627810)the Joint Fund of Advanced Aerospace Manufacturing Technology Research(No.2017-JCJQ-ZQ-031)the National Science and Technology Major Program of China(No.2018YFB1305003)。
文摘Existing coupled distributed estimation and motion control strategies of mobile sensor networks present limitations in velocity-varying target tracking. Therefore, a velocity-varying target tracking algorithm based on flocking control is proposed herein. The Kalman-consensus filter is utilized to estimate the position, velocity and acceleration of a target. The flocking control algorithm with a velocity-varying virtual leader enables the position of the center of the mobile sensor network to converge to that of the target. By applying an effective cascading Lyapunov method, stability analysis is performed. Simulation results are provided to validate the feasibility of the proposed algorithm.
基金the National Natural Science Foundation of China (No.60374001,60334030)the Doctoral Fund of Ministry of Education of China (No.20030006003)the Commission of Science,Technology and Industry for National Defence (No.A2120061303)
文摘This paper is mainly devoted to the flocking of a class of swarm with fixed topology in a changing environment. Firstly, the controller for each agent is proposed by employing the error terms between the state of the agent and the average state of its neighbors. Secondly, a sufficient condition for the swarm to achieve flocking is presented under assumptions that the gradient of the environment is bounded and the initial position graph is connected. Thirdly, as the environment is a plane, it is further proved that the velocity of each agent finally converges to the velocity of the swarm center although not one agent knows where the center of the group is. Finally, numerical examples are included to illustrate the obtained results.
文摘This paper investigates the flocking problem in multi-agent system with time-varying delay and a virtual leader. Each agent here is subject to nonlinear dynamics. For the system, the corresponding algorithm with time-varying delay is proposed. Under the assumption that the initial network is connected, it is proved that the distance between agents is in the desired distance. The theoretical deduction shows that the stable flocking motion is achieved.