In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage ...In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth(MLD), and the cooling of mixed layer temperature(MLT) were observed. The changes in mixed layer salinity(MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×10^4 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is required for the anomalies in the subsurface to be restored to pretyphoon conditions than for the anomalies in the mixed layer.展开更多
Critical Path Method (CPM) Scheduling has proven to be an effective project management tool. However, teaching the topic has proven difficult to include all elements of CPM yet keep it simple enough for students to un...Critical Path Method (CPM) Scheduling has proven to be an effective project management tool. However, teaching the topic has proven difficult to include all elements of CPM yet keep it simple enough for students to understand. In an effort to simplify the teaching of critical path method scheduling, the issue of two total floats in an activity does not get the attention necessary to address its occurrence. The objective of this paper is to present a mathematical method to show multiple total floats are possible for an activity. Also presented are suggestions for schedule crashing when multiple total floats are found. Two totals floats can be found if constraints (Lag or Lead) or non-Finish-to-Start (FS) relationships, or both are used in a network diagram. Situations are possible where an activity may have a start total float (STF) of zero but have a finish total float (FTF) greater than zero, or vice versa. Because the critical path generally follows the zero total float, these situations, where either the STF or the FTF is critical while the other is not, determines how the critical path activity must be controlled and crashed. This paper will present approaches of how to crash the schedule when a portion of the activity, either start or finish, is critical. Also presented will be methods to teach the subject matter with or without the use of scheduling software. Critical Path Method was revisited to see what the minimal conditions are needed to have activities with two total float. Generalized crashing methods were studied to see if the methods can be used when two total floats exist.展开更多
The three dimensional structure of the western boundary current east of the Vietnam coast was determined from measurements by Argo profiling floats which deployed near the east of the Vietnam Coast in October 2007. Th...The three dimensional structure of the western boundary current east of the Vietnam coast was determined from measurements by Argo profiling floats which deployed near the east of the Vietnam Coast in October 2007. The trajectories of the Argo floats provided robust evidence that there does exist southward flowing current along the Vietnam coast. The southward current begins at about 15°N, 111°E, flowing along the 1 000 m isobath and extending to 5°N south. The estimated surface and parking depth velocities obtained from the floats suggest that this southward current can extend to 1 000 m depth. The mean surface velocity of the western boundary current is about 49 cm/s, with the maximum speed exceeding 100 cm/s occurring at 11.6°N, 109.5°E in the direction of 245°. The mean parking depth (1 000 m) velocity is 12-16 cm/s with the maximum speed of 36 cm/s occurring at 12.1°N, 109.7°E in the direction of 239°. The water mass analysis suggests that the Kuroshio surface water and NPIW are not apparent in the western boundary current although this time was the favored season for the Kuroshio intrusion into Luzon Strait. The mean geostrophic currents suggest that the Kuroshio intrusion into Luzon Strait during October to December 2007 is very weak, as most of the intruding water was carried eastward at 14°N near the western boundary and little flowed southward along the western boundary, providing an explanation for the absence of Kuroshio surface water and NPIW in the water mass analysis. There is a strong cyclonic circulation in the SSCS during this time, which induces a strong mixing in the western boundary companied by a homogeneous salinity layer between 300 600 m in the salinity vertical distribution. No reversal undercurrent occurred at the intermediate depth along the western boundary east of the Vietnam coast during October to December 200%展开更多
1.Introduction As China’s first floating production platform in ultra-deepwater,the“Deep Sea No.1”energy station is a milestone in China’s deepwater resource utilization.The energy station is located in the LS17-2...1.Introduction As China’s first floating production platform in ultra-deepwater,the“Deep Sea No.1”energy station is a milestone in China’s deepwater resource utilization.The energy station is located in the LS17-2 gas field,150 km off the southeast coast of Hainan Island,China.It is a semi-submersible platform(Fig.1)with a displacement of 101 thousand tonnes and an operational draft of 35 to 40 m.The platform is permanently moored in 1422 m water by 16 chain-polyester-chain mooring lines in a 4×4 pattern,and six steel catenary risers(SCRs)are attached to the platform.It is the world’s first and only semi-submersible platform with the function of condensate storage,so it can be regarded as a floating production storage and offloading(FPSO)unit.With the ability to produce 3 billion m3 of natural gas each year(enough for over 10 million families),the Deep Sea No.1 energy station is a key step toward China’s energy independence.The LS17-2 gas field,where the Deep Sea No.1 energy station is located,was discovered in 2014.Plans for its development were made in 2015,followed by research and a preliminary design.Deep Sea No.1 went into operation on June 25,2021,and will operate onsite continuously without dry-docking for 30 years.展开更多
Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data...Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest.展开更多
This paper presents an overview of the recent developments in hybrid wind-wave energy.With the focus on floating concepts,the possible configurations introduced in the literature are categorized and depicted,and the m...This paper presents an overview of the recent developments in hybrid wind-wave energy.With the focus on floating concepts,the possible configurations introduced in the literature are categorized and depicted,and the main conclusions obtained from the references are summarized.Moreover,offshore wind and wave resources are discussed in terms of complementarity and supplementarity,offering a new perspective to developing hybrid wind-wave energy systems that look for synergies not limited to maximizing power output.Then,the feasibility of the concepts under development is discussed in detail,with focus on technical feasibility,dynamic feasibility and limitations of the methods employed.The hybrid configurations that surpassed the experimental validation phase are highlighted,and the experimental results are summarized.By compiling more than 40 floating wind turbine concepts,new relations are drawn between power,wind turbine dimensions,platforms’draft and displacement,which are further related to the payload allowance of the units to accommodate wave devices and onboard power take-off systems.Bearing in mind that it is a challenge to model the exact dynamics of hybrid floating wind-wave platforms,this paper elucidates the current research gaps,limitations and future trends in the field.Lastly,based on the overview and topics discussed,several major conclusions are drawn concerning hybrid synergies,dynamics and hydrodynamics of hybrid platforms,feasibility of concepts,among other regards.展开更多
Modularfiloating structures(MFS)offer a sustainable pathway towards the expansion of coastal cities in adaptation tofilooding and sea level rise driven by climate change.It is therefore necessary to develop analytical...Modularfiloating structures(MFS)offer a sustainable pathway towards the expansion of coastal cities in adaptation tofilooding and sea level rise driven by climate change.It is therefore necessary to develop analytical methods easily accessible to architects or structural engineers for the rapid prototyping of MFS designs.This work develops novel closed‑form expressions describing the rigid body dynamics of symmetrically loaded rectangular pontoons across all six degrees of freedom(DOF)excited by surface waves approaching from any arbitrary direction.The derivations were based on Airy wave theory assuming frequency‑independent added mass and damping.When benchmarked against numerical solutions from ANSYS/AQWA for two MFS prototypes,the analytical approach proved capable of predicting the response amplitude operators(RAO)across all DOFs,wave directions,and structural confiigurations.However,while the response of mass‑dominated DOFs(surge,sway,and yaw)were well captured,the damping ratio for stiffness‑dominated DOFs(heave,roll,and pitch)must be judiciously selected to yield accurate RAO results.A parametric investigation further elucidated the contribution of structural geometry and wave directionality on the critical accelerations experienced by an idealizedfiloating structure founded upon a square pontoon under realistic sea states.It was discovered that the largest accelerations were triggered by waves approaching orthogonally to the pontoon.Ultimately,this work facilitates a more streamlined approach for the dynamic analysis of compliantfiloating bodies to supplement detailed modeling efforts via numerical methods.展开更多
For the development of an integrated rounded rectangular wellhead platform with a bucket foundation,a model test was conducted to study the towing motion response of such a structure under still water and wave conditi...For the development of an integrated rounded rectangular wellhead platform with a bucket foundation,a model test was conducted to study the towing motion response of such a structure under still water and wave conditions.The influence of various factors on the floating stability of the structure was investigated through alterations of the towing conditions(draft,towing point position,and wave conditions),and the related influencing mechanism was analyzed.Comparison and analysis were performed to determine the changes in the structure motion pattern and various effects of towing conditions on the structure during towing in still water and regular waves.Moreover,the influence of each factor on the structure’s motion response during towing was analyzed using the Apriori algorithm.In addition,for the simulation of the towing process under actual sea conditions,a towing test was performed under irregular waves,and the stability of towing in irregular waves was compared with that in regular waves.展开更多
Offshore floating photovoltaic systems have tremendous potential to address the energy crisis.As a novel type of float-ing photovoltaic system,membrane structures are increasingly applied due to their advantages of be...Offshore floating photovoltaic systems have tremendous potential to address the energy crisis.As a novel type of float-ing photovoltaic system,membrane structures are increasingly applied due to their advantages of being lightweight and cost-effective.A 1:40 scaled model for laboratory experiments was designed and developed,considering Ocean Sun’s membrane structure.The study aims to investigate the hydrodynamic characteristics of the membrane structure under wave loading by testing its various mo-tion responses and mooring forces at different wave heights and periods.The conclusions indicate that as the wave period decreases within the range of 1.75 to 1.25 s,the heave motion response of the structure decreases,whereas pitch,surge motion response,heave acceleration,and mooring force increase.The amplitudes of various motions and mooring forces of the structure decrease with de-creasing wave height.The hydrodynamic responses under irregular and regular waves follow similar patterns,but the responses and mooring forces induced by irregular waves are more significant.The structure should be designed based on the actual wave height.In addition,the same frequency resonance phenomenon is avoided because the movement period of each degree of freedom is close to the wave period.展开更多
Siwa Oasis,one of Egypts most remote settlements,is also a popular tourist destination thanks to the beautiful salt pools with water that people can float in.Salt is both a blessing and a curse in Siwa.Years ago,peopl...Siwa Oasis,one of Egypts most remote settlements,is also a popular tourist destination thanks to the beautiful salt pools with water that people can float in.Salt is both a blessing and a curse in Siwa.Years ago,people started realizing that there was money to be made in the salt trade,and salt mining operations created the salt lakes that the oasis is now famous for.展开更多
As a typical in-memory computing hardware design, nonvolatile ternary content-addressable memories(TCAMs) enable the logic operation and data storage for high throughout in parallel big data processing. However,TCAM c...As a typical in-memory computing hardware design, nonvolatile ternary content-addressable memories(TCAMs) enable the logic operation and data storage for high throughout in parallel big data processing. However,TCAM cells based on conventional silicon-based devices suffer from structural complexity and large footprintlimitations. Here, we demonstrate an ultrafast nonvolatile TCAM cell based on the MoTe2/hBN/multilayergraphene (MLG) van der Waals heterostructure using a top-gated partial floating-gate field-effect transistor(PFGFET) architecture. Based on its ambipolar transport properties, the carrier type in the source/drain andcentral channel regions of the MoTe2 channel can be efficiently tuned by the control gate and top gate, respectively,enabling the reconfigurable operation of the device in either memory or FET mode. When working inthe memory mode, it achieves an ultrafast 60 ns programming/erase speed with a current on-off ratio of ∼105,excellent retention capability, and robust endurance. When serving as a reconfigurable transistor, unipolar p-typeand n-type FETs are obtained by adopting ultrafast 60 ns control-gate voltage pulses with different polarities.The monolithic integration of memory and logic within a single device enables the content-addressable memory(CAM) functionality. Finally, by integrating two PFGFETs in parallel, a TCAM cell with a high current ratioof ∼10^(5) between the match and mismatch states is achieved without requiring additional peripheral circuitry.These results provide a promising route for the design of high-performance TCAM devices for future in-memorycomputing applications.展开更多
During normal de-ballasting operations for floating docks,each ballast pump independently manages a specific group of ballast tanks.However,when a pump malfunctions,a connection valve between the two groups of ballast...During normal de-ballasting operations for floating docks,each ballast pump independently manages a specific group of ballast tanks.However,when a pump malfunctions,a connection valve between the two groups of ballast water systems is opened.This allows the adjacent pump to serve as a helper pump,simultaneously controlling two groups of ballast water systems.This study explores a full-scale floating dock’s dynamic behaviours during the de-ballasting operations under this situation through a numerical model.In the developed numerical model,the dock is described as a six-degree-of-freedom rigid body which is subjected to hydrostatic,hydrodynamic,and mooring loads.A hydraulic model of the piping network of the malfunctioning pump and the helper pump is proposed.A modified P-controller regulates opening angles of all tank valves for minimal pitch and roll.Two configurations of the floating dock,i.e.,a single floating dock and a floating dock with an onboard vessel,are considered.The numerical results show that the optimal helper pumps can be identified regarding the pumps’total de-ballasting capacity and the dock’s stability.The most severe scenarios can be determined in term of the dock’s maximum draught differences caused by its roll and pitch.The observed maximum draught differences remain small relative to the dock’s width,indicating the effectiveness of employing helper pumps and the proposed automatic ballast control strategy for one-pump malfunction scenarios.展开更多
Lithium-ion batteries(LIBs)suffer from float charge failure in the grid-scale storage market.However,the lack of a unified descriptor for the diverse reasons behind float charge failure poses a challenge.Here,a quanti...Lithium-ion batteries(LIBs)suffer from float charge failure in the grid-scale storage market.However,the lack of a unified descriptor for the diverse reasons behind float charge failure poses a challenge.Here,a quantitative analysis of active lithium loss is conducted across multiple temperatures into float charge of Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_(2)–graphite batteries.It is proposed that the active lithium loss can be used as a descriptor to describe the reasons for float charge quantitatively.Approximately 6.88%and 0.96%of active lithium are lost due to solid electrolyte interphase thickening and lithium deposition,which are primary and secondary failure reasons,respectively.These findings are confirmed by X-ray photoelectron spectroscopy depth profiling,scanning electron microscope,and accelerating rate calorimeter.Titration-gas chromatography and nuclear magnetic resonance are utilized to quantitatively analyze active lithium loss.Additionally,electrolyte decomposition at high temperatures also contributes to active lithium loss,as determined by Auger electron spectrum and nondestructive ultrasound measurements.Notably,no failure is detected in the cathode due to the relatively low working voltage of the float charge.These findings suggest that inhibiting active lithium loss can be an efficient way of delaying failure during high-temperature float charge processes in LIBs.展开更多
Floating breakwaters(FBs)are commonly employed for the protection of coastal installations.In this work,a convextype floating breakwater(FB)is proposed,and its hydrodynamic characteristics are studied through systemat...Floating breakwaters(FBs)are commonly employed for the protection of coastal installations.In this work,a convextype floating breakwater(FB)is proposed,and its hydrodynamic characteristics are studied through systematic laboratory experiments.Two different deck widths and two different mooring systems are set in the experiment.The transmission coefficients,reflection coefficients,motion responses and mooring forces of convex-type FBs are obtained in experiments.The influences of the deck width and mooring system on the hydrodynamic characteristics of the proposed FB are analyzed and compared.The experimental results show that the reflection coefficient and mooring force of the convex-type FB with a cross-mooring system are significantly larger than those of the convextype FB with a parallel-mooring system.A convex-type FB with a larger deck width has a higher reflection coefficient.The convex-type FBs with cross-and parallel-mooring systems have similar surge and heave motions,but the cross-mooring results in small roll motion.In addition,reliable prediction formulas for the transmission coefficient of convex-type FBs with different mooring systems have been developed,which are important for engineering design.展开更多
An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses o...An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses on the typhoon-driven very large floating structures(VLFS)configuration of the maritime airport.The findings indicate that the proposed method enables efficient information exchange between the fluid and structure domains through the coupling interface.The displacement of the maritime airport affected by the typhoon’s wave field is mostly determined by the direction of the flow.The wave loads acting on the floating body also influence the wave profile of the irregular wave and the deformation of the floating body.The von Mises stress distribution is not significant in all parts of the floating body.展开更多
Two asymmetric types of floating breakwaters integrated with a wave energy converter(WEC-FBs),a floating square box with a triangle(trapezoidal type)or a wave baffle(L type)attached to its rear side,have been proposed...Two asymmetric types of floating breakwaters integrated with a wave energy converter(WEC-FBs),a floating square box with a triangle(trapezoidal type)or a wave baffle(L type)attached to its rear side,have been proposed.In this research,the hydrodynamic performance,including capture width ratio(CWR),wave transmission coefficient,heave motion,and force coefficient,were studied and compared between the two types.A numerical simulation model based on the Navier-Stokes equation was employed.The effects of power take-off(PTO)damping coefficient,wave periods,and draft/displacement on the hydrodynamic performance of the two structure shapes were simulated and investigated.The results reveal that the L type performs better in shorter wave periods,and the trapezoidal type exhibits a higher CWR in intermediate wave periods.This study offers knowledge of the design and protection of the two WEC-FB types.展开更多
Under severe sea conditions, wave slamming on ships and marine engineering structures may lead to structural damage and casualties. Moreover, the strong nonlinearity inherent in the wave slamming process significantly...Under severe sea conditions, wave slamming on ships and marine engineering structures may lead to structural damage and casualties. Moreover, the strong nonlinearity inherent in the wave slamming process significantly limits the accuracy of numerical analyses and finite element simulations. Therefore, this paper takes a new type of floating wind turbine as an example and performs a physical model test on the wave slamming characteristics of this floating wind turbine.Based on a 1:50 model of the Pivot Buoy floating wind turbine, an experimental study is performed under the combined effects of wind-wave loads on the peak pressure, duration, and pressure distribution of slamming. First, two sets of mooring systems, the combined scheme and the full mooring chain scheme, are designed to conduct a series of experimental studies of model slamming under different wind and wave incidence angles, wave heights, and wave periods. By doing so, the slamming characteristics of the wind turbine can be obtained. Moreover, to solve the problem of the large pitch motion response of the prototype wind turbine, a set of vertically oscillating structures is designed,and the slamming pressure characteristics of the optimized model are also investigated through model tests.展开更多
Topology optimization stands as a pivotal technique in realizing periodic microstructure design.A novel approach is proposed,integrating the energy-based homogenization method with the Floating Projection Topology Opt...Topology optimization stands as a pivotal technique in realizing periodic microstructure design.A novel approach is proposed,integrating the energy-based homogenization method with the Floating Projection Topology Optimization(FPTO)method to achieve smooth topology design.The objective is to optimize the periodic microstructure to maximize the properties of specific materials,such as bulk modulus and shear modulus,or to achieve negative Poisson's ratio.Linear material interpolation is used to eliminate the nonlinear challenges and design dependence caused by material penalty.Furthermore,the three-field density representation technique is applied to augment length scales and solid/void characteristics.Through systematic analysis and numerical simulations,the impacts of various initial designs and optimization parameters on the optimization outcomes are investigated.The results demonstrate that the optimized periodic microstructures exhibit extreme performance with clear boundaries.The identification of appropriate optimization parameters is crucial for enhancing the extreme mechanical properties of material microstructures.It can provide valuable guidance for aerospace component design involving material microstructures and metamaterials.展开更多
BACKGROUND Slipping rib syndrome(SRS)is caused by abnormal subluxation of floating ribs,resulting in chronic pain and possible tissue damage.Its prevalence is often overlooked,as it shares symptoms with other musculos...BACKGROUND Slipping rib syndrome(SRS)is caused by abnormal subluxation of floating ribs,resulting in chronic pain and possible tissue damage.Its prevalence is often overlooked,as it shares symptoms with other musculoskeletal conditions,and is more common in young females and athletes.Symptoms include pain along the lower rib margin,aggravated by trunk movements,deep breathing and coughing.Treatment usually starts conservatively with physiotherapy and analgesics.In severe cases,extrapleural rib resection may be required.CASE SUMMARY In April 2023,a 24-year-old woman presented with persistent right hemithorax pain in the eleventh rib for one year.Instrumental examinations,including ultrasonography and magnetic resonance imaging,were negative for abdominal and osteochondral abnormalities.The pain intensity,rated 8/10 on the numeric rating scale(NRS),remained unresponsive to pain therapy.After a careful literature review and discussion with the patient,we opted for a minimally invasive surgical approach.Under general anesthesia,a mini-thoracotomy was performed along the anterior course of the eleventh rib.After exposure,abnormal rib mobility was detected,which led to resection of the medial margin and anchoring to the overlying rib with nonabsorbable sutures.Histological examination revealed no abnormalities.The patient was discharged on the first postoperative day.Pain decreased significantly,reaching 1/10 on the NRS at one month.At 3 months,the patient had mild fluctuating pain(2/10)requiring occasional analgesics but did not interfere with daily activities.CONCLUSION Minimally invasive rib-preserving surgery effectively reduces pain and hospitalization time,offering a valid alternative to conventional rib resection for refractory SRS.展开更多
基金The National Basic Research Program(973 Program)of China under contract No.2013CB430301the National Natural Science Foundation of China under contract No.41206022the Ministry of Science and Technology of China under contract No.2012FY112300
文摘In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth(MLD), and the cooling of mixed layer temperature(MLT) were observed. The changes in mixed layer salinity(MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×10^4 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is required for the anomalies in the subsurface to be restored to pretyphoon conditions than for the anomalies in the mixed layer.
文摘Critical Path Method (CPM) Scheduling has proven to be an effective project management tool. However, teaching the topic has proven difficult to include all elements of CPM yet keep it simple enough for students to understand. In an effort to simplify the teaching of critical path method scheduling, the issue of two total floats in an activity does not get the attention necessary to address its occurrence. The objective of this paper is to present a mathematical method to show multiple total floats are possible for an activity. Also presented are suggestions for schedule crashing when multiple total floats are found. Two totals floats can be found if constraints (Lag or Lead) or non-Finish-to-Start (FS) relationships, or both are used in a network diagram. Situations are possible where an activity may have a start total float (STF) of zero but have a finish total float (FTF) greater than zero, or vice versa. Because the critical path generally follows the zero total float, these situations, where either the STF or the FTF is critical while the other is not, determines how the critical path activity must be controlled and crashed. This paper will present approaches of how to crash the schedule when a portion of the activity, either start or finish, is critical. Also presented will be methods to teach the subject matter with or without the use of scheduling software. Critical Path Method was revisited to see what the minimal conditions are needed to have activities with two total float. Generalized crashing methods were studied to see if the methods can be used when two total floats exist.
基金Supported by the Knowledge Innovation Projects of Chinese Academy of Sciences(Nos. KZCX2-YW-214, KZCX2-YW-Q11-02)NSFC (No. 40806010)+1 种基金the National Basic Research Program of China "973 Program" (No.2006CB403600)the CAS Key projects, and by the "Hundreds-Talent Program" project of CAS
文摘The three dimensional structure of the western boundary current east of the Vietnam coast was determined from measurements by Argo profiling floats which deployed near the east of the Vietnam Coast in October 2007. The trajectories of the Argo floats provided robust evidence that there does exist southward flowing current along the Vietnam coast. The southward current begins at about 15°N, 111°E, flowing along the 1 000 m isobath and extending to 5°N south. The estimated surface and parking depth velocities obtained from the floats suggest that this southward current can extend to 1 000 m depth. The mean surface velocity of the western boundary current is about 49 cm/s, with the maximum speed exceeding 100 cm/s occurring at 11.6°N, 109.5°E in the direction of 245°. The mean parking depth (1 000 m) velocity is 12-16 cm/s with the maximum speed of 36 cm/s occurring at 12.1°N, 109.7°E in the direction of 239°. The water mass analysis suggests that the Kuroshio surface water and NPIW are not apparent in the western boundary current although this time was the favored season for the Kuroshio intrusion into Luzon Strait. The mean geostrophic currents suggest that the Kuroshio intrusion into Luzon Strait during October to December 2007 is very weak, as most of the intruding water was carried eastward at 14°N near the western boundary and little flowed southward along the western boundary, providing an explanation for the absence of Kuroshio surface water and NPIW in the water mass analysis. There is a strong cyclonic circulation in the SSCS during this time, which induces a strong mixing in the western boundary companied by a homogeneous salinity layer between 300 600 m in the salinity vertical distribution. No reversal undercurrent occurred at the intermediate depth along the western boundary east of the Vietnam coast during October to December 200%
文摘1.Introduction As China’s first floating production platform in ultra-deepwater,the“Deep Sea No.1”energy station is a milestone in China’s deepwater resource utilization.The energy station is located in the LS17-2 gas field,150 km off the southeast coast of Hainan Island,China.It is a semi-submersible platform(Fig.1)with a displacement of 101 thousand tonnes and an operational draft of 35 to 40 m.The platform is permanently moored in 1422 m water by 16 chain-polyester-chain mooring lines in a 4×4 pattern,and six steel catenary risers(SCRs)are attached to the platform.It is the world’s first and only semi-submersible platform with the function of condensate storage,so it can be regarded as a floating production storage and offloading(FPSO)unit.With the ability to produce 3 billion m3 of natural gas each year(enough for over 10 million families),the Deep Sea No.1 energy station is a key step toward China’s energy independence.The LS17-2 gas field,where the Deep Sea No.1 energy station is located,was discovered in 2014.Plans for its development were made in 2015,followed by research and a preliminary design.Deep Sea No.1 went into operation on June 25,2021,and will operate onsite continuously without dry-docking for 30 years.
文摘Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest.
基金supported by the Portuguese Foundation for Science and Technology(Fundação para a Ciência e Tecnologia-FCT)it contributes to the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(Grant No.UIDB/UIDP/00134/2020)funded the first author for his PhD Scholarship(Grant No.SFRH/BD/145602/2019).
文摘This paper presents an overview of the recent developments in hybrid wind-wave energy.With the focus on floating concepts,the possible configurations introduced in the literature are categorized and depicted,and the main conclusions obtained from the references are summarized.Moreover,offshore wind and wave resources are discussed in terms of complementarity and supplementarity,offering a new perspective to developing hybrid wind-wave energy systems that look for synergies not limited to maximizing power output.Then,the feasibility of the concepts under development is discussed in detail,with focus on technical feasibility,dynamic feasibility and limitations of the methods employed.The hybrid configurations that surpassed the experimental validation phase are highlighted,and the experimental results are summarized.By compiling more than 40 floating wind turbine concepts,new relations are drawn between power,wind turbine dimensions,platforms’draft and displacement,which are further related to the payload allowance of the units to accommodate wave devices and onboard power take-off systems.Bearing in mind that it is a challenge to model the exact dynamics of hybrid floating wind-wave platforms,this paper elucidates the current research gaps,limitations and future trends in the field.Lastly,based on the overview and topics discussed,several major conclusions are drawn concerning hybrid synergies,dynamics and hydrodynamics of hybrid platforms,feasibility of concepts,among other regards.
文摘Modularfiloating structures(MFS)offer a sustainable pathway towards the expansion of coastal cities in adaptation tofilooding and sea level rise driven by climate change.It is therefore necessary to develop analytical methods easily accessible to architects or structural engineers for the rapid prototyping of MFS designs.This work develops novel closed‑form expressions describing the rigid body dynamics of symmetrically loaded rectangular pontoons across all six degrees of freedom(DOF)excited by surface waves approaching from any arbitrary direction.The derivations were based on Airy wave theory assuming frequency‑independent added mass and damping.When benchmarked against numerical solutions from ANSYS/AQWA for two MFS prototypes,the analytical approach proved capable of predicting the response amplitude operators(RAO)across all DOFs,wave directions,and structural confiigurations.However,while the response of mass‑dominated DOFs(surge,sway,and yaw)were well captured,the damping ratio for stiffness‑dominated DOFs(heave,roll,and pitch)must be judiciously selected to yield accurate RAO results.A parametric investigation further elucidated the contribution of structural geometry and wave directionality on the critical accelerations experienced by an idealizedfiloating structure founded upon a square pontoon under realistic sea states.It was discovered that the largest accelerations were triggered by waves approaching orthogonally to the pontoon.Ultimately,this work facilitates a more streamlined approach for the dynamic analysis of compliantfiloating bodies to supplement detailed modeling efforts via numerical methods.
基金support from the National Natural Science Foundation of China(No.52171274)。
文摘For the development of an integrated rounded rectangular wellhead platform with a bucket foundation,a model test was conducted to study the towing motion response of such a structure under still water and wave conditions.The influence of various factors on the floating stability of the structure was investigated through alterations of the towing conditions(draft,towing point position,and wave conditions),and the related influencing mechanism was analyzed.Comparison and analysis were performed to determine the changes in the structure motion pattern and various effects of towing conditions on the structure during towing in still water and regular waves.Moreover,the influence of each factor on the structure’s motion response during towing was analyzed using the Apriori algorithm.In addition,for the simulation of the towing process under actual sea conditions,a towing test was performed under irregular waves,and the stability of towing in irregular waves was compared with that in regular waves.
基金supported by the National Natural Science Foundation of China(No.52271287).
文摘Offshore floating photovoltaic systems have tremendous potential to address the energy crisis.As a novel type of float-ing photovoltaic system,membrane structures are increasingly applied due to their advantages of being lightweight and cost-effective.A 1:40 scaled model for laboratory experiments was designed and developed,considering Ocean Sun’s membrane structure.The study aims to investigate the hydrodynamic characteristics of the membrane structure under wave loading by testing its various mo-tion responses and mooring forces at different wave heights and periods.The conclusions indicate that as the wave period decreases within the range of 1.75 to 1.25 s,the heave motion response of the structure decreases,whereas pitch,surge motion response,heave acceleration,and mooring force increase.The amplitudes of various motions and mooring forces of the structure decrease with de-creasing wave height.The hydrodynamic responses under irregular and regular waves follow similar patterns,but the responses and mooring forces induced by irregular waves are more significant.The structure should be designed based on the actual wave height.In addition,the same frequency resonance phenomenon is avoided because the movement period of each degree of freedom is close to the wave period.
文摘Siwa Oasis,one of Egypts most remote settlements,is also a popular tourist destination thanks to the beautiful salt pools with water that people can float in.Salt is both a blessing and a curse in Siwa.Years ago,people started realizing that there was money to be made in the salt trade,and salt mining operations created the salt lakes that the oasis is now famous for.
基金supported by the National Key Research&Development Projects of China(Grant No.2022YFA1204100)National Natural Science Foundation of China(Grant No.62488201)+1 种基金CAS Project for Young Scientists in Basic Research(YSBR-003)the Innovation Program of Quantum Science and Technology(2021ZD0302700)。
文摘As a typical in-memory computing hardware design, nonvolatile ternary content-addressable memories(TCAMs) enable the logic operation and data storage for high throughout in parallel big data processing. However,TCAM cells based on conventional silicon-based devices suffer from structural complexity and large footprintlimitations. Here, we demonstrate an ultrafast nonvolatile TCAM cell based on the MoTe2/hBN/multilayergraphene (MLG) van der Waals heterostructure using a top-gated partial floating-gate field-effect transistor(PFGFET) architecture. Based on its ambipolar transport properties, the carrier type in the source/drain andcentral channel regions of the MoTe2 channel can be efficiently tuned by the control gate and top gate, respectively,enabling the reconfigurable operation of the device in either memory or FET mode. When working inthe memory mode, it achieves an ultrafast 60 ns programming/erase speed with a current on-off ratio of ∼105,excellent retention capability, and robust endurance. When serving as a reconfigurable transistor, unipolar p-typeand n-type FETs are obtained by adopting ultrafast 60 ns control-gate voltage pulses with different polarities.The monolithic integration of memory and logic within a single device enables the content-addressable memory(CAM) functionality. Finally, by integrating two PFGFETs in parallel, a TCAM cell with a high current ratioof ∼10^(5) between the match and mismatch states is achieved without requiring additional peripheral circuitry.These results provide a promising route for the design of high-performance TCAM devices for future in-memorycomputing applications.
基金The article is a result of joined research performed during the project:“A Floating Dock Digital Twin towards Efficient,Safer and Autonomous Docking Operations”-NOR/POLNOR/DigiFloDock/0009/2019-00 which is cofinanced by the programme“Applied research”under the Norwegian Financial Mechanisms 2014-2021 POLNOR 2019-Digital and Industry.
文摘During normal de-ballasting operations for floating docks,each ballast pump independently manages a specific group of ballast tanks.However,when a pump malfunctions,a connection valve between the two groups of ballast water systems is opened.This allows the adjacent pump to serve as a helper pump,simultaneously controlling two groups of ballast water systems.This study explores a full-scale floating dock’s dynamic behaviours during the de-ballasting operations under this situation through a numerical model.In the developed numerical model,the dock is described as a six-degree-of-freedom rigid body which is subjected to hydrostatic,hydrodynamic,and mooring loads.A hydraulic model of the piping network of the malfunctioning pump and the helper pump is proposed.A modified P-controller regulates opening angles of all tank valves for minimal pitch and roll.Two configurations of the floating dock,i.e.,a single floating dock and a floating dock with an onboard vessel,are considered.The numerical results show that the optimal helper pumps can be identified regarding the pumps’total de-ballasting capacity and the dock’s stability.The most severe scenarios can be determined in term of the dock’s maximum draught differences caused by its roll and pitch.The observed maximum draught differences remain small relative to the dock’s width,indicating the effectiveness of employing helper pumps and the proposed automatic ballast control strategy for one-pump malfunction scenarios.
基金supported by the National Key Research and Development(R&D)Program of China(2022YFB4101600)Key Research and Development(R&D)Projects of Shanxi Province(202102040201003,202202040201007)+1 种基金the Fundamental Research Program of Shanxi Province(20210302123008)the ICC CAS,SCJC-XCL-2023-13,CAS Project for Young Scientists in Basic Research(Grant No.YSBR-102).
文摘Lithium-ion batteries(LIBs)suffer from float charge failure in the grid-scale storage market.However,the lack of a unified descriptor for the diverse reasons behind float charge failure poses a challenge.Here,a quantitative analysis of active lithium loss is conducted across multiple temperatures into float charge of Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_(2)–graphite batteries.It is proposed that the active lithium loss can be used as a descriptor to describe the reasons for float charge quantitatively.Approximately 6.88%and 0.96%of active lithium are lost due to solid electrolyte interphase thickening and lithium deposition,which are primary and secondary failure reasons,respectively.These findings are confirmed by X-ray photoelectron spectroscopy depth profiling,scanning electron microscope,and accelerating rate calorimeter.Titration-gas chromatography and nuclear magnetic resonance are utilized to quantitatively analyze active lithium loss.Additionally,electrolyte decomposition at high temperatures also contributes to active lithium loss,as determined by Auger electron spectrum and nondestructive ultrasound measurements.Notably,no failure is detected in the cathode due to the relatively low working voltage of the float charge.These findings suggest that inhibiting active lithium loss can be an efficient way of delaying failure during high-temperature float charge processes in LIBs.
基金financially supported by the National Natural Science Foundation of China(Grant No.52088102)New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Floating breakwaters(FBs)are commonly employed for the protection of coastal installations.In this work,a convextype floating breakwater(FB)is proposed,and its hydrodynamic characteristics are studied through systematic laboratory experiments.Two different deck widths and two different mooring systems are set in the experiment.The transmission coefficients,reflection coefficients,motion responses and mooring forces of convex-type FBs are obtained in experiments.The influences of the deck width and mooring system on the hydrodynamic characteristics of the proposed FB are analyzed and compared.The experimental results show that the reflection coefficient and mooring force of the convex-type FB with a cross-mooring system are significantly larger than those of the convextype FB with a parallel-mooring system.A convex-type FB with a larger deck width has a higher reflection coefficient.The convex-type FBs with cross-and parallel-mooring systems have similar surge and heave motions,but the cross-mooring results in small roll motion.In addition,reliable prediction formulas for the transmission coefficient of convex-type FBs with different mooring systems have been developed,which are important for engineering design.
基金supported in part by the National Natural Science Foundation of China(No.51761165022)the Natural Science Foundation of Jiangsu Province(No.BK20210309)the Jiangsu Graduate Research and Practice Innovation Program(No.KYCX21_0234)。
文摘An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses on the typhoon-driven very large floating structures(VLFS)configuration of the maritime airport.The findings indicate that the proposed method enables efficient information exchange between the fluid and structure domains through the coupling interface.The displacement of the maritime airport affected by the typhoon’s wave field is mostly determined by the direction of the flow.The wave loads acting on the floating body also influence the wave profile of the irregular wave and the deformation of the floating body.The von Mises stress distribution is not significant in all parts of the floating body.
基金Supported by Shandong Provincial Natural Science Foundation,China(ZR2020ME259)Open Fund of Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(CDPM2021KF21).
文摘Two asymmetric types of floating breakwaters integrated with a wave energy converter(WEC-FBs),a floating square box with a triangle(trapezoidal type)or a wave baffle(L type)attached to its rear side,have been proposed.In this research,the hydrodynamic performance,including capture width ratio(CWR),wave transmission coefficient,heave motion,and force coefficient,were studied and compared between the two types.A numerical simulation model based on the Navier-Stokes equation was employed.The effects of power take-off(PTO)damping coefficient,wave periods,and draft/displacement on the hydrodynamic performance of the two structure shapes were simulated and investigated.The results reveal that the L type performs better in shorter wave periods,and the trapezoidal type exhibits a higher CWR in intermediate wave periods.This study offers knowledge of the design and protection of the two WEC-FB types.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52071161)。
文摘Under severe sea conditions, wave slamming on ships and marine engineering structures may lead to structural damage and casualties. Moreover, the strong nonlinearity inherent in the wave slamming process significantly limits the accuracy of numerical analyses and finite element simulations. Therefore, this paper takes a new type of floating wind turbine as an example and performs a physical model test on the wave slamming characteristics of this floating wind turbine.Based on a 1:50 model of the Pivot Buoy floating wind turbine, an experimental study is performed under the combined effects of wind-wave loads on the peak pressure, duration, and pressure distribution of slamming. First, two sets of mooring systems, the combined scheme and the full mooring chain scheme, are designed to conduct a series of experimental studies of model slamming under different wind and wave incidence angles, wave heights, and wave periods. By doing so, the slamming characteristics of the wind turbine can be obtained. Moreover, to solve the problem of the large pitch motion response of the prototype wind turbine, a set of vertically oscillating structures is designed,and the slamming pressure characteristics of the optimized model are also investigated through model tests.
基金supported by the financial support from the National Natural Science Foundation of China(No.52172356)Hunan Provincial Natural Science Foundation of China(No.2022JJ10012)。
文摘Topology optimization stands as a pivotal technique in realizing periodic microstructure design.A novel approach is proposed,integrating the energy-based homogenization method with the Floating Projection Topology Optimization(FPTO)method to achieve smooth topology design.The objective is to optimize the periodic microstructure to maximize the properties of specific materials,such as bulk modulus and shear modulus,or to achieve negative Poisson's ratio.Linear material interpolation is used to eliminate the nonlinear challenges and design dependence caused by material penalty.Furthermore,the three-field density representation technique is applied to augment length scales and solid/void characteristics.Through systematic analysis and numerical simulations,the impacts of various initial designs and optimization parameters on the optimization outcomes are investigated.The results demonstrate that the optimized periodic microstructures exhibit extreme performance with clear boundaries.The identification of appropriate optimization parameters is crucial for enhancing the extreme mechanical properties of material microstructures.It can provide valuable guidance for aerospace component design involving material microstructures and metamaterials.
文摘BACKGROUND Slipping rib syndrome(SRS)is caused by abnormal subluxation of floating ribs,resulting in chronic pain and possible tissue damage.Its prevalence is often overlooked,as it shares symptoms with other musculoskeletal conditions,and is more common in young females and athletes.Symptoms include pain along the lower rib margin,aggravated by trunk movements,deep breathing and coughing.Treatment usually starts conservatively with physiotherapy and analgesics.In severe cases,extrapleural rib resection may be required.CASE SUMMARY In April 2023,a 24-year-old woman presented with persistent right hemithorax pain in the eleventh rib for one year.Instrumental examinations,including ultrasonography and magnetic resonance imaging,were negative for abdominal and osteochondral abnormalities.The pain intensity,rated 8/10 on the numeric rating scale(NRS),remained unresponsive to pain therapy.After a careful literature review and discussion with the patient,we opted for a minimally invasive surgical approach.Under general anesthesia,a mini-thoracotomy was performed along the anterior course of the eleventh rib.After exposure,abnormal rib mobility was detected,which led to resection of the medial margin and anchoring to the overlying rib with nonabsorbable sutures.Histological examination revealed no abnormalities.The patient was discharged on the first postoperative day.Pain decreased significantly,reaching 1/10 on the NRS at one month.At 3 months,the patient had mild fluctuating pain(2/10)requiring occasional analgesics but did not interfere with daily activities.CONCLUSION Minimally invasive rib-preserving surgery effectively reduces pain and hospitalization time,offering a valid alternative to conventional rib resection for refractory SRS.