期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Fluorescence life-time imaging microscopy(FLIM)monitors tumor cell death triggered by photothermal therapy with MoS_(2) nanosheets 被引量:1
1
作者 Hongda Liang Zheng Peng +5 位作者 Xiao Peng Yufeng Yuan Teng Ma Yiwan Song Jun Song Junle Qu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第5期69-78,共10页
Recently,photothermal therapy(PTT)has been proved to have great potential in tumor therapy.In the last several years,MoS_(2),as one novel member of nanomaterials,has been applied into PTT due to its excellent photothe... Recently,photothermal therapy(PTT)has been proved to have great potential in tumor therapy.In the last several years,MoS_(2),as one novel member of nanomaterials,has been applied into PTT due to its excellent photothermal conversion efficacy.In this work,we applied fuorescence lifetime imaging microscopy(FLIM)techniques into monitoring the PPT-triggered cell death under MoS_(2) nanosheet treatment.Two types of MoS_(2) nanosheets(single layer nanosheets and few layer nanosheets)were obtained,both of which exhibited presentable photothermal conversion fficacy,leading to high cell death rates of 4T1 cells(mouse breast cancer cells)under PTT.Next,live cell images of 4T1 cells were obtained via directly labeling the mitochondria with Rodamine123,which were then continuously observed with FLIM technique.FLIM data showed that the fuorescence lifetimes of mitochondria targeting dye in cells treated with each type of MoS_(2) nanosheets significantly increased during PTT treatment.By contrast,the fuorescence lifetime of the same dye in control cells(without nanomaterials)remained constant after laser irradiation.These findings suggest that FLIM can be of great value in monitoring cell death process during PTT of cancer cells,which could provide dynamic data of the cellular microenvironment at single cell level in multiple biomedical applications. 展开更多
关键词 Fluorescence lifetime imaging microscopy(flim) MoS_(2)nanosheets photothermal therapy(PTT) 4T1 cells
原文传递
Fast fluorescence lifetime imaging techniques:A review on challenge and development 被引量:4
2
作者 Xiongbo Liu Danying Lin +4 位作者 Wolfgang Becker Jingjing Niu Bin Yu Liwei Liu Junle Qu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第5期3-29,共27页
Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitorin... Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitoring cellular microenvironments,studying interaction between proteins,metabolic state,screening drugs and analyzing their efficacy,characterizing novel materials,and diagnosing early cancers.Understandably,there is a large interest in obtaining FLIM data within an acquisition time as short as possible.Consequently,there is currently a technology that advances towards faster and faster FLIM recording.However,the maximum speed of a recording technique is only part of the problerm.The acquisition time of a FLIM image is a complex function of many factors.These include the photon rate that can be obtained from the sample,the amount of information a technique extracts from the decay functions,the fficiency at which it determines fluorescence decay parameters from the recorded photons,the demands for the accuracy of these parameters,the number of pixels,and the lateral and axial resolutions that are obtained in biological materials.Starting from a discussion of the parameters which determine the acquisition time,this review will describe existing and emerging FLIM techniques and data analysis algo-rithms,and analyze their performance and recording speed in biological and biomedical applications. 展开更多
关键词 Fluorescence lifetime imaging microscopy(flim) acquisitin time imaging speed dead time photon fficiency time domain frequency domain scanning wide-field imaging time-correlated single photon counting(TCSPC) gated detection gated image intensifer modulated inage intensifier SPAD array detector
原文传递
Visualizing the internalization and biological impact of nanoplastics in live intestinal organoids by Fluorescence Lifetime Imaging Microscopy(FLIM)
3
作者 Irina A.Okkelman Hang Zhou +6 位作者 Sergey M.Borisov Angela C.Debruyne Austin E.Y.T.Lefebvre Marcelo Leomil Zoccoler Linglong Chen Bert Devriendt Ruslan I.Dmitriev 《Light: Science & Applications》 2025年第10期2915-2935,共21页
Increased micro-and nanoplastic(MNP)pollution poses significant health risks,yet the mechanisms of their accumulation and effects on absorptive tissues remain poorly understood.Addressing this knowledge gap requires t... Increased micro-and nanoplastic(MNP)pollution poses significant health risks,yet the mechanisms of their accumulation and effects on absorptive tissues remain poorly understood.Addressing this knowledge gap requires tractable models coupled to dynamic live cell imaging methods,enabling multi-parameter single cell analysis.We report a new method combining adult stem cell-derived small intestinal organoid cultures with live fluorescence lifetime imaging microscopy(FLIM)to study MNP interactions with gut epithelium.To facilitate this,we optimized live imaging of porcine and mouse small intestinal organoids with an‘apical-out’topology.Subsequently,we produced a set of pristine MNPs based on PMMA and PS(<200 nm,doped with deep-red fluorescent dye)and evaluated their interaction with organoids displaying controlled epithelial polarity.We found that nanoparticles interacted differently with apical and basal membranes of the organoids and showed a species-specific pattern of cellular uptake.Using a phasor analysis approach,we demonstrate improved sensitivity of FLIM over conventional intensity-based microscopy.The resulting‘fluorescence lifetime barcoding’enabled distinguishing of different types of MNP and their interaction sites within organoids.Finally,we studied short(1 day)-and long(3 day)-term exposure effects of PMMA and PS-based MNPs on mitochondrial function,total cell energy budget and epithelial inflammation.We found that even pristine MNPs could disrupt chemokine production and mitochondrial membrane potential in intestinal epithelial cells.The presented FLIM approach will advance the study of MNP toxicity,their biological impacts on gastrointestinal tissue and enable the tracing of other fluorescent nanoparticles in live organoid and 3D ex vivo systems. 展开更多
关键词 intestinal organoids gut epithel tractable models small intestinal organoid cultures live fluorescence lifetime imaging microscopy flim dynamic live cell imaging methodsenabling absorptive tissues nanoplastics
原文传递
Wide-field fluorescence lifetime imaging of single molecules with a gated single-photon camera
4
作者 Nathan Ronceray Salim Bennani +8 位作者 Marianna Fanouria Mitsioni Nicole Siegel Maria J.Marcaida Claudio Bruschini Edoardo Charbon Rahul Roy Matteo Dal Peraro Guillermo P.Acuna Aleksandra Radenovic 《Light: Science & Applications》 2025年第9期2709-2719,共11页
Fluorescence lifetime imaging microscopy(FLIM)is a powerful tool to discriminate fluorescent molecules or probe their nanoscale environment.Traditionally,FLIM uses time-correlated single-photon counting(TCSPC),which i... Fluorescence lifetime imaging microscopy(FLIM)is a powerful tool to discriminate fluorescent molecules or probe their nanoscale environment.Traditionally,FLIM uses time-correlated single-photon counting(TCSPC),which is precise but intrinsically low-throughput due to its dependence on point detectors.Although time-gated cameras have demonstrated the potential for high-throughput FLIM in bright samples with dense labeling,their use in single-molecule microscopy has not been explored extensively.Here,we report fast and accurate single-molecule FLIM with a commercial time-gated single-photon camera.Our optimized acquisition scheme achieves single-molecule lifetime measurements with a precision only about three times less than TCSPC,while imaging with a large number of pixels(512×512)allowing for the spatial multiplexing of over 3000 molecules.With this approach,we demonstrate parallelized lifetime measurements of large numbers of labeled pore-forming proteins on supported lipid bilayers,and temporal single-molecule Förster resonance energy transfer measurements at 5-25 Hz.This method holds considerable promise for the advancement of multi-target single-molecule localization microscopy and biopolymer sequencing. 展开更多
关键词 time gated camera time correlated single photon counting fluorescence lifetime imaging probe their nanoscale environmenttraditionallyflim F rster resonance energy transfer discriminate fluorescent molecules fluorescence lifetime imaging microscopy flim supported lipid bilayers
原文传递
Layer-dependent signatures for exciton dynamics in monolayer and multilayer WSe2 revealed by fluorescence lifetime imaging measurement
5
作者 Yuanshuang Liu Huanglong Li +2 位作者 Cuicui Qiu Xiangmin Hu Dameng Liu 《Nano Research》 SCIE EI CAS CSCD 2020年第3期661-666,共6页
Two-dimensional(2D)transition-metal dichalcogenide(TMD)materials have aroused noticeable interest due to their distinguished electronic and optical properties.However,little is known about their complex exciton proper... Two-dimensional(2D)transition-metal dichalcogenide(TMD)materials have aroused noticeable interest due to their distinguished electronic and optical properties.However,little is known about their complex exciton properties together with the exciton dynamics process which have been expected to influence the performance of optoelectronic devices.The process of fluorescence can well reveal the process of exciton transition after excitation.In this work,the room-temperature layer-dependent exciton dynamics properties in layered WSe2 are investigated by the fluorescence lifetime imaging microscopy(FLIM)for the first time.This paper focuses on two mainly kinds of excitons including the direct transition neutral excitons and trions.Compared with the lifetime of neutral excitons(<0.3 ns within four-layer),trions possess a longer lifetime(~6.6 ns within four-layer)which increases with the number of layers.We attribute the longer-lived lifetime to the increasing number of trions as well as the varieties of trion configurations in thicker WSe2.Besides,the whole average lifetime increases over 10%when WSe2 flakes added up from monolayer to four-layer.This paper provides a novel tuneable layer-dependent method to control the exciton dynamics process and finds a relatively longer transition lifetime of trions at room temperature,enabling to investigate in the charge transport in TMD-based optoelectronics devices in the future. 展开更多
关键词 two-dimensional(2D)WSe2 exciton dynamics fluorescence lifetime fluorescence lifetime imaging microscopy(flim) density functional theory(DFT)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部