Melon fruit flavor is a key quality characteristic that influences consumer preference.Grafting is an effective technique to enhance fruit quality but yields divergent outcomes in terms of fruit flavor.To address this...Melon fruit flavor is a key quality characteristic that influences consumer preference.Grafting is an effective technique to enhance fruit quality but yields divergent outcomes in terms of fruit flavor.To address this problem,we analyzed parallel changes in flavor-related metabolite accumulation and gene expression in two pumpkin rootstock grafted melons during four fruit developmental stages.We identified 26061 expressed genes and 840 metabolites from 21 different compound classes,including carbohydrates,amino acids,and lipids.We also detected 50 aroma volatile compounds in the grafted melons.Results showed that genes and metabolites associated with metabolic pathways(carbohydrate,amino acid,lipid,and phenylpropanoid)play a key role in flavor formation.Compared with‘Sizhuang 12’,‘Tianzhen 1’rootstock improved melon fruit flavor by upregulating sugar-related genes(HK,MPI,MIOX,and STP)and inducing metabolite accumulation(d-ribose-5-phosphate,d-galactose,and trehalose 6-phosphate),whereas decreasing bitterness-related amino acids(l-arginine,l-asparagine,and l-tyrosine)and associated genes(thrC,ACS,and GLUL)expression at ripening stage.Furthermore,‘Tianzhen 1’exhibited higher expression levels of enzyme-coding genes(4CL,CSE,and COMT)responsible for aroma volatile synthesis than‘Sizhuang 12’rootstock.Taken together,our results decipher the basis of the molecular mechanism underlying fruit flavor in grafted melons and provide valuable information for the melons genetic improvement.展开更多
Tomato is an important economic crop all over the world.Volatile flavors in tomato fruit are key factors influencing consumer liking and commercial quality.However,the regulatory mechanism controlling the volatile fla...Tomato is an important economic crop all over the world.Volatile flavors in tomato fruit are key factors influencing consumer liking and commercial quality.However,the regulatory mechanism controlling the volatile flavors of tomatoes is still not clear.Here,we integrated the metabolome and transcriptome of the volatile flavors in tomato fruit to explore the regulatory mechanism of volatile flavor formation,using wild and cultivated tomatoes with significant differences in flavors.A total of 35 volatile flavor compounds were identified,based on the solid phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS).The content of the volatiles,affecting fruit flavor,significantly increased in the transition from breaker to red ripe fruit stage.Moreover,the total content of the volatiles in wild tomatoes was much higher than that in the cultivated tomatoes.The content variations of all volatile flavors were clustered into 10 groups by hierarchical cluster and Pearson coefficient correlation(PCC)analysis.The fruit transcriptome was also patterned into 10 groups,with significant variations both from the mature green to breaker fruit stage and from the breaker to red ripe fruit stage.Combining the metabolome and the transcriptome of the same developmental stage of fruits by co-expression analysis,we found that the expression level of 1182 genes was highly correlated with the content of volatile flavor compounds,thereby constructing two regulatory pathways of important volatile flavors.One pathway is tetrahydrothiazolidine N-hydroxylase(SlTNH1)-dependent,which is regulated by two transcription factors(TFs)from the bHLH and AP2/ERF families,controlling the synthesis of 2-isobutylthiazole in amino acid metabolism.The other is lipoxygenase(Sl LOX)-dependent,which is regulated by one TF from the HD-Zip family,controlling the synthesis of hexanal and(Z)-2-heptenal in fatty acid metabolism.Dual-luciferase assay confirmed the binding of b HLH and AP2/ERF to their structural genes.The findings of this study provide new insights into volatile flavor formation in tomato fruit,which can be useful for tomato flavor improvement.展开更多
Edible oils derived from aquatic products are rich in lipids beneficial to human health.However,the volatile flavor characteristics of flesh oil and liver oil from Doederleinia berycoides remain unclear.In this study,...Edible oils derived from aquatic products are rich in lipids beneficial to human health.However,the volatile flavor characteristics of flesh oil and liver oil from Doederleinia berycoides remain unclear.In this study,flesh oil and liver oil were extracted from Doederleinia berycoides,revealing different fatty acid compositions and contents.Lipidomics analysis identified a total of 124 differential lipids between the flesh oil and liver oil,including 42 glycerophospholipids(GPs),33 glycerolipids(GLs),23 free fatty acids(FAs),13 sphingolipids(SPs),10 sterols(STs),and 3 prenol lipids(PRs).Analysis using HS-GC-IMS identified 12 key volatile compounds that significantly contributed to the distinct volatile flavors of the flesh and liver oils.The volatile flavors originated from these volatile compounds,which had different Relative Odor Activity Values(ROAVs).Further results from HSSPME-GC-MS showed that the volatile flavors of the flesh oil and liver oil were respectively attributed to 64 and 35 volatile compounds,each with unique key volatile compounds exhibiting different ROAVs.There were significant positive or negative correlations between 18 key differential lipids and 24 volatile compounds in both flesh oil and liver oil.Therefore,the complex lipid profiles are responsible for the unique volatile flavors of flesh oil and liver oil,and the differential lipids play a central role in their volatile flavor formation.These findings provide a foundation for understanding the volatile flavor differences in fish oils and hold promise for further exploration of the molecular mechanisms underlying oil volatile flavors.展开更多
SARS-CoV-2,particularly the Omicron variant,often leads to flavor perception dysfunction in infected individuals,making a comprehensive understanding of its duration and recovery patterns a critical part of disease ma...SARS-CoV-2,particularly the Omicron variant,often leads to flavor perception dysfunction in infected individuals,making a comprehensive understanding of its duration and recovery patterns a critical part of disease management.This study surveyed a cohort of 199 mildly-to-moderately affected SARS-CoV-2 Omicron-infected patients,focusing on the alterations in their olfaction,taste,and chemesthesis perception.Further,a subset of 36 participants(18 healthy and 18 infected)underwent sensory evaluations to check the variation of umami taste sensitivity.The results demonstrated that most of the infected cohort experienced chemosensory disorders,with the recovery period varying between one week and over a month.Intriguingly,the severity of flavor perception changes during infection significantly correlated with the length of the recovery period.Furthermore,this study explored the specific manifestations of flavor perception dysfunction,potential contributing factors,and potential mechanistic explanations for chemosensory disorders.These include local damage,inflammatory responses,and virus-induced neural damage.However,this study revealed no significant change(P>0.05)in umami taste sensitivity among infected patients 55 days post-infection.While this research faces limitations related to its self-reported,cross-sectional design,and regional focus,it offers valuable insights into the multifaceted impact of COVID-19,particularly the Omicron variant,on chemosensory perception.展开更多
Background Pork quality and flavor are critical determinants of consumer preference,yet the role of gut microbiota in shaping meat characteristics remains underexplored.In this study,we investigated how a probiotic co...Background Pork quality and flavor are critical determinants of consumer preference,yet the role of gut microbiota in shaping meat characteristics remains underexplored.In this study,we investigated how a probiotic consortium(FAM:Lactobacillus acidophilus and Bacillus subtilis)modulates the gut-muscle axis to enhance pork flavor.Results In finishing pigs,FAM supplementation significantly increased flavor-associated nucleotides and umamienhancing amino acids in longissimus dorsi muscle.Metagenomic analysis revealed FAM-driven enrichment of glycandegrading Prevotella and short-chain fatty acid-producing Phascolarctobacterium,accompanied by reduced antibiotic resistance genes and virulence factors.Spearman correlation linked Prevotella copri abundance with elevated muscle amino acids,suggesting microbial-encoded CAZymes as key mediators.Conclusions This study provides the first evidence that probiotic-induced gut microbiota remodeling enhances pork flavor through metabolic cross-talk along the gut-muscle axis.The findings suggest a novel strategy for improving pork quality via dietary interventions targeting gut microbiota.展开更多
In this study,we performed a systematic analysis of the multiplicity dependence of hadron production at mid-rapidity(|y|<0.5),ranging from the light to the charm sector in proton-proton(pp)collisions at√s=13 TeV.T...In this study,we performed a systematic analysis of the multiplicity dependence of hadron production at mid-rapidity(|y|<0.5),ranging from the light to the charm sector in proton-proton(pp)collisions at√s=13 TeV.This study used a multi-phase transport(AMPT)model coupled with PYTHIA8 initial conditions.We investigated the baryon-to-meson and the strange-to-non-strange meson ratios varying with the charged particle density.By tuning the coalescence parameters,the AMPT model provides a reasonable description of the experimental data for the inclusive production of both light and charm hadrons,comparable to the string fragmentation model calculations with color reconnection effects.Additionally,we analyzed the relative production of hadrons by examining the self-normalized particle ratios as a function of the charged hadron density.Our findings suggest that parton evolution effects and the coalescence hadronization process in the AMPT model result in a strong flavor hierarchy in the multiplicity dependence of the baryon-to-meson ratio.Furthermore,our investigation of the p_(T) differential double ratio of the baryon-to-meson fraction between high-and low-multiplicity events revealed distinct modifications to the flavor associated baryon-to-meson ratio p_(T) shape in high-multiplicity events when comparing the coalescence hadronization model to the color reconnection model.These observations highlight the importance of understanding the hadronization process in high-energy pp collisions through comprehensive multiplicity-dependent multi-flavor analysis.展开更多
The naturally fermented Inner Mongolian cheese’s flavor and nutritional value make it a popular choice among customers.In this work,to create multi-functional peptides that have taste and biological activity,peptidom...The naturally fermented Inner Mongolian cheese’s flavor and nutritional value make it a popular choice among customers.In this work,to create multi-functional peptides that have taste and biological activity,peptidomics and bioinformatics were used to screen flavor peptides from Inner Mongolian cheese and further assess their antioxidant and angiotensin I-converting enzyme(ACE)inhibitory properties.According to sensory data,YH8 and IL7 had detectable bitter tastes with low thresholds of 0.03 and 0.06 mmol/L,respectively.With an umami threshold range of 0.24‒0.81 mmol/L,VQ6,FK13,HP13 and QT14 exhibited a range of flavors dominated by umami,including sweet,bitter,salty,sour and kokumi.Antioxidant activity wise,YH8,VQ6,HP13 and QT14 were well represented.The above-mentioned peptides all had some ACE inhibitory effect.The bitter peptide IL7(IC_(50)=0.08 mmol/L)had the highest level of ACE inhibitory activity,followed by YH8(IC_(50)=0.33 mmol/L).These multi-functional peptides,which have been assessed for bioactive and taste features in Inner Mongolian cheese,may have positive impacts on health and harmonize the cheese’s overall flavor.These results suggest that some flavor peptides produced in fermented foods might be with bioactivities while providing a basis for the exploration and application of multi-functional peptides.展开更多
OBJECTIVE:To study the correlation between five flavors(Wuwei)and the chemical substances of Chinese herbal medicines in Lamiaceae and to establish five flavors identification models.METHODS:A total of 245 herbs belon...OBJECTIVE:To study the correlation between five flavors(Wuwei)and the chemical substances of Chinese herbal medicines in Lamiaceae and to establish five flavors identification models.METHODS:A total of 245 herbs belonging to the Lamiaceae family were selected from the Pharmacopoeia of the People's Republic of China 2020 and Chinese Materia Medica.A database of the chemical substances of these herbs was constructed,with the chemical substances obtained from the professional literature and databases.A three-level classification system of the material components was established on the basis of the molecular structure and biosynthetic pathway of these substances.Apriori association rule analysis and feature selection were employed to obtain the material basis of the five flavors.A multiple logistic regression analysis method was employed to establish identification models for the five flavors.RESULTS:The association rule analysis revealed 34 high-value groups and 30 specific groups for the main flavors,and 39 high-value groups and 36 specific groups for the combined flavors.Sixteen groups of chemical components were the decisive groups for the main flavors,and 13 groups were the decisive groups for the combined flavors.Multiple logistic regression analysis was used to successfully establish identification models with an overall accuracy of 88.8%for the main flavors and 87%for the combined flavors.CONCLUSIONS:Five flavors are often characterized by the interaction of multiple classes of substances,and a single class of substances cannot be used to characterize flavors.The organic combination of multiple classes of substances is the material basis of the five flavors,both the main and combined flavors.Significant differences exist in the material basis of the main and combined flavors,suggesting that the“natural flavor”and“functional flavor”may have different material bases.展开更多
Fermented chili products are popular traditional fermented foods around the world.However,differences in microbial communities in fermented chilies from different regions and how they affect the flavor compounds in ch...Fermented chili products are popular traditional fermented foods around the world.However,differences in microbial communities in fermented chilies from different regions and how they affect the flavor compounds in chili fermentation have not been reported.In this study,the dynamics of flavor compounds and microbial communities in fermented chilies from Sichuan,Guizhou,and Hunan were systematically investigated by macro-genome sequencing,solid phase microextraction-gas chromatograph-mass spectrometry(SPME-GC-MS),electronic nose,and electronic tongue techniques.Simultaneously,the microbial metabolic mechanisms and the relationship between flavor compounds and microbiome were unraveled through staged and simulated fermentation analysis.The results showed that 53 chemical odorants,including alcohols,esters,aldehydes,and acids,were identified as chemical markers to differentiate the regional samples.A total of 12 microbial species,including Staphylococcus xylosus,unclassified Staphylococcus species,Weissella confusus,Lactococcus cremoris,Lactococcus garvieae,Lactiplantibacillus sakei,Pediciococcus propionicigenes,Pediciococcus idahonensis,Pediciococcus aciditolerans,Nocardioides antri,Debaryomyces hansenii,and Colletotrichum scovillei,were identified as microbial markers to differentiate the regional samples.Correlation analysis showed that Lactobacillaceae was associated with fruity,floral,spicy,and fatty aromas.The electronic nose and tongue analysis results showed that 9 flavor and 8 taste indicators significantly differed between regional samples(P<0.05).Additionally,flavor compounds and microbial diversity were robust under initial selection stress and showed higher diversity under metabolome-microbiome interactions.Importantly,simulated fermentation confirmed that metabolome-microbiome interactions drove the shift in microbial structure,metabolism,and flavor in regionally fermented chilies.These results provide insights into the succession of microbial communities and the formation of flavor compounds in chili fermentation,which may enable the future replication of fermented foods with the same flavor.展开更多
Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influenci...Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influencing consumer preference.These VOCs are mainly derived from amino acids,fatty acids,and terpenoid pathways(Chen et al.,2023).Esters contribute to fruity and sweet notes,whereas terpenes and C_(9) aldehydes/alcohols impart floral and melon-like aromas,respectively(Mayobre et al.,2024).展开更多
The massless dark photon~γ can only interact with the Standard Model(SM)sector via higherdimensional operators.In this letter,we investigate its production associated with the ordinary photonγfrom the lepton flavor ...The massless dark photon~γ can only interact with the Standard Model(SM)sector via higherdimensional operators.In this letter,we investigate its production associated with the ordinary photonγfrom the lepton flavor violation(LFV)process l_(i)→l_(j)γγ and di-production from the LFV process l_(i)→l_(j)γγ induced by dipole operators.Comparing the obtained numerical results with the corresponding experimental measurements,we obtain the constraints on the effective couplings of γ with the SM charged leptons.The upper limit of the effective coupling|DLμe|2+|DRμe|2coming from the process μ→e~γγis looser than the processμ→eγ by about one order of magnitude.展开更多
This study was conducted to investigate the recipe and process of instant pickle by multiple steps with dry daylily as a raw material, and an orthogonal test was adopted to obtain the optimal recipe and process. The p...This study was conducted to investigate the recipe and process of instant pickle by multiple steps with dry daylily as a raw material, and an orthogonal test was adopted to obtain the optimal recipe and process. The pickling process of the instant flavored daylily was conducted at an optimal crisp-keeping Ca Cl2 concentration at 0.050%, cooking time of 5 min, pickling time of 6 h and a salt concentration of 4%. The effects of various factors on product taste were in order of salt concentrationcooking timepickling timeCa Cl2 concentration.The obtained product has the characteristics of strong fragrance, crisp delicious taste and unique flavor with stomachic effect.展开更多
Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.This study employed targeted metabolomics and chemometrics to inv...Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.This study employed targeted metabolomics and chemometrics to investigate how shaping techniques affect the flavor of milk-flavored white tea(MFWT).The results showed that the tea cake sample with the shortest pressing time(Y90)has the highest amino acid content and milky aroma intensity.There were variations in amino acids,catechins,and soluble sugars among MFWT samples with different shaping techniques.The total contents of amino acids and catechins in tea cake sample(Y90)were significantly lower than those in the loose tea sample(SC)and bundle-like tea sample(SG),while the total sugar content was significantly higher than that in SC(P<0.05).Additionally,the content of volatiles presenting milky aroma(VIP&OAV>1)in Y90 remained lower relative to SC and SG(P<0.05),but the proportion was not different from that in SC and SG,minimally affecting the overall flavor.The short-time pressing method might be suitable for mass production of MFWT.These findings provide insights into improving the tightness of the appearance of MFWT with minimal impact on tea flavor.展开更多
Objective:Explicating the property and action of traditional Chinese medicine(TCM)in the perspectives of modern science deepens the insight into the property of TCM,and provides the basis for new drug discovery and cl...Objective:Explicating the property and action of traditional Chinese medicine(TCM)in the perspectives of modern science deepens the insight into the property of TCM,and provides the basis for new drug discovery and clinical therapy.In this study,we investigated the relationship between transient receptor potential melastatin 8(TRPM8)and pungent flavor using three-dimensional pharmacophores based on virtual screening methods.Methods:Firstly,an inhouse database was established to identify the related pharmacological action according to the traditional Chinese herbs expressing an action of promoting blood circulation.Then,several therapeutic targets,3-hydroxy-3-methylglutaryl-coenzyme A reductase(HMG-CoAR),cholesteryl ester transfer protein(CETP),Niemann-Pick C1-Like 1(NPC1L1)and platelet-activating factor receptor(PAFR),were selected to screen traditional Chinese herbs,and the common virtual screening hits with various hit scores providing data to reveal the correlation among TRPM8 and therapeutic targets.Results:According to the screening results,TRPM8 agonists were able to identify the effective components of pungent herbs and TRPM8,which shares the common virtual screening hits with the therapeutic targets,was considered to be related to the action of pungent taste.Conclusion:The novel ideas and methods in this study are beneficial to unveil the scientific relationship between a TCM property and its action.展开更多
Smoking is widely used in fish processing for the color and flavor. Smoke flavorings have evolved as a successful alternative to traditional smoking. The hazards of the fish products treated by liquid-smoking process ...Smoking is widely used in fish processing for the color and flavor. Smoke flavorings have evolved as a successful alternative to traditional smoking. The hazards of the fish products treated by liquid-smoking process are discussed in this review. The smoke flavoring is one important ingredient in the smoke-flavored fish. This paper gives the definition of smoke flavorings and the hazard of polycyclic aromatic hydrocarbons (PAHs) residue in the smoke flavorings on the market. It gives also an assessment of chemical hazards such as carcinogenic PAHs, especially Benzo-[α]pyrene, as well as biological hazards such as Listeria monocytogenes, Clostridium botulinum, histamine and parasites in smoke-flavored fish. The limitations in regulations or standards are discussed. Smoke flavored fish have lower content of PAHs as compared with the traditional smoking techniques if the PAHs residue in smoke flavorings is controlled by regulations or standards.展开更多
The main aroma component of Luzhou-flavor Liquor is ethyl caproate, which is combined with appropriate amount of ethyl butyrate, ethyl acetate, ethyl lactate and so on. By adding the marine bacillus BC-2 (Accession nu...The main aroma component of Luzhou-flavor Liquor is ethyl caproate, which is combined with appropriate amount of ethyl butyrate, ethyl acetate, ethyl lactate and so on. By adding the marine bacillus BC-2 (Accession number: MK811408) to substrate sludge, the bacillus complex bacterial liquid (pit Mud Functional Bacterial liquid) has been modified. The complex bacterial liquid was used in the production of Luzhou-flavor Liquor and it dramatically promoted the content of health-beneficial ingredients in the new workshop. These results demonstrated that the marine bacillus BC-2 can effectively improve the quality and health benefit of Luzhou-flavor Liquor.展开更多
The objective of this study was to test the essential oil-emitted flavor (volatile) of lavender by bacteria killing potency using Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), enterohemorrh...The objective of this study was to test the essential oil-emitted flavor (volatile) of lavender by bacteria killing potency using Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), enterohemorrhagic E. coli O157:H7, Pseudomonas aeruginosa and Candida albicans. Antibacterial activity was assessed by creating of the bacterial growth curve in the liquid medium cultivation and the growth inhibition on the agar plate cultivation. Citronellal, one of compounds in Rosa rugose oil, was used as a positive control for comparison in activity. The results showed that lavender and citronellal flavor (volatile) or oil respectively demonstrated bacteria killing effect in both analytical manners. However, P. aeruginosa resisted bacteria killing potency of lavender (citronellal) oil or oil-emitted flavor. It could be concluded that both lavender oil-emitted flavor and oil showed bacteria killing potency. Lavender oil (or oil-emitted flavor) will be expected to apply for the patient waiting room to disinfect in air along with the mental relaxation of the patient.展开更多
The translation practice report aims to translate and analyze the natural flavors and the Moon Festival of Yunnan Farming Culture Museum.Under the Guidance of the functional equivalence theory,the author of this trans...The translation practice report aims to translate and analyze the natural flavors and the Moon Festival of Yunnan Farming Culture Museum.Under the Guidance of the functional equivalence theory,the author of this translation practice report analyzes the source text from three aspects:lexical equivalence,syntactic equivalence and textual equivalence.This translation practice report has five parts.The first part is the original text and the translated version.The second introduces the background and significance of the report.The third introduces the whole translation process.The fourth part is the case analysis,which illustrates the difficulties,emphases and solutions in translation.The fifth is a summary of translation practice,including the translator's gains,shortcomings and improvement direction.展开更多
Shrimp paste is a type of condiments with high nutritional value.However,the flavors of shrimp paste,particularly the non-uniformity flavors,have limited its application in food processing.In order to identify the cha...Shrimp paste is a type of condiments with high nutritional value.However,the flavors of shrimp paste,particularly the non-uniformity flavors,have limited its application in food processing.In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes,five kinds of typical commercial products were evaluated in this study.The differences in the volatile composition of the five products were investigated.Solid phase micro-extraction method was employed to extract the volatile compounds.GC-MS and electronic nose were applied to identify the compounds,and the data were analyzed using principal component analysis(PCA).A total of 62 volatile compounds were identified,including 8 alcohols,7 aldehydes,3 ketones,7 ethers,7 acids,3 esters,6 hydrocarbons,12 pyrazines,2 phenols,and 7 other compounds.The typical volatile compounds contributing to the flavor of shrimp paste were found as follows:dimethyl disulfide,dimethyl tetrasulfide,dimethyl trisulfide,2,3,5-trimethyl-6-ethyl pyrazine,ethyl-2,5-dimethyl-pyrazine,phenol and indole.Propanoic acid,butanoic acid,furans,and 2-hydroxy-3-pentanone caused unpleasant odors,such as pungent and rancid odors.Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species.These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method,enhance the accuracy of identification,and provide useful information for sensory research and product development.展开更多
Fuji apple(Malus×domestica Borkh.)is a popular fruit cultivar and occupies an important position in the fruit market due to its excellent flavor and storage quality.Ethylene emission can induce respiration,which ...Fuji apple(Malus×domestica Borkh.)is a popular fruit cultivar and occupies an important position in the fruit market due to its excellent flavor and storage quality.Ethylene emission can induce respiration,which would reduce postharvest quality and increase storage losses.In order to maintain fruit quality and extend shelf life,apples are usually stored in a low-temperature environment after harvest to reduce the formation of ethylene.Volatile aroma components are regarded as one of the most important aspects of flavor quality and a key factor for apple quality grading and customer satisfaction.Ethylene emission and its relationship with volatile aromas during low temperature,however,have not been determined.In this study,the dynamic changes of volatile aroma compounds of Fuji apples stored at 4°C were detected and analyzed for 42 days.The variation of ethylene released from Fuji apple was studied correspondingly.The results showed that ethyl butyrate,ethyl caproate,ethyl 2-methylbutyrate and 2-methylbutyl acetate were the main aroma components of Fuji apple.The change in ethylene emission and the normalized peak area of volatile aroma compounds exhibited a similar tendency that increased significantly from the 3rd day to the peak on the 14th day and then decreased;there was a positive linear correlation between them with a correlation coefficient of 0.79(P<0.05).Therefore,ethylene release can be used as a potential indicator for evaluation of volatile aroma compounds in apples.Using ethylene emission as an indicator could reduce the difficulty and complexity of volatile aroma evaluation,which could be a new non-destructive inspection choice for apple flavor quality assessment.展开更多
基金supported by the National Natural Science Foundation of China(31972435)to Jintao Cheng,and Agriculture Research System of MOF and MORA(CARS-25)Natural Science Foundation of Hubei Province(2019CFA017)Ningbo Scientific and Technological Project(2021Z006)to Zhilong Bie.
文摘Melon fruit flavor is a key quality characteristic that influences consumer preference.Grafting is an effective technique to enhance fruit quality but yields divergent outcomes in terms of fruit flavor.To address this problem,we analyzed parallel changes in flavor-related metabolite accumulation and gene expression in two pumpkin rootstock grafted melons during four fruit developmental stages.We identified 26061 expressed genes and 840 metabolites from 21 different compound classes,including carbohydrates,amino acids,and lipids.We also detected 50 aroma volatile compounds in the grafted melons.Results showed that genes and metabolites associated with metabolic pathways(carbohydrate,amino acid,lipid,and phenylpropanoid)play a key role in flavor formation.Compared with‘Sizhuang 12’,‘Tianzhen 1’rootstock improved melon fruit flavor by upregulating sugar-related genes(HK,MPI,MIOX,and STP)and inducing metabolite accumulation(d-ribose-5-phosphate,d-galactose,and trehalose 6-phosphate),whereas decreasing bitterness-related amino acids(l-arginine,l-asparagine,and l-tyrosine)and associated genes(thrC,ACS,and GLUL)expression at ripening stage.Furthermore,‘Tianzhen 1’exhibited higher expression levels of enzyme-coding genes(4CL,CSE,and COMT)responsible for aroma volatile synthesis than‘Sizhuang 12’rootstock.Taken together,our results decipher the basis of the molecular mechanism underlying fruit flavor in grafted melons and provide valuable information for the melons genetic improvement.
基金supported by the National Natural Science Foundation of China(Grant Nos.32120103010,32002050)Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding(Grant No.G20220628003-03)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences。
文摘Tomato is an important economic crop all over the world.Volatile flavors in tomato fruit are key factors influencing consumer liking and commercial quality.However,the regulatory mechanism controlling the volatile flavors of tomatoes is still not clear.Here,we integrated the metabolome and transcriptome of the volatile flavors in tomato fruit to explore the regulatory mechanism of volatile flavor formation,using wild and cultivated tomatoes with significant differences in flavors.A total of 35 volatile flavor compounds were identified,based on the solid phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS).The content of the volatiles,affecting fruit flavor,significantly increased in the transition from breaker to red ripe fruit stage.Moreover,the total content of the volatiles in wild tomatoes was much higher than that in the cultivated tomatoes.The content variations of all volatile flavors were clustered into 10 groups by hierarchical cluster and Pearson coefficient correlation(PCC)analysis.The fruit transcriptome was also patterned into 10 groups,with significant variations both from the mature green to breaker fruit stage and from the breaker to red ripe fruit stage.Combining the metabolome and the transcriptome of the same developmental stage of fruits by co-expression analysis,we found that the expression level of 1182 genes was highly correlated with the content of volatile flavor compounds,thereby constructing two regulatory pathways of important volatile flavors.One pathway is tetrahydrothiazolidine N-hydroxylase(SlTNH1)-dependent,which is regulated by two transcription factors(TFs)from the bHLH and AP2/ERF families,controlling the synthesis of 2-isobutylthiazole in amino acid metabolism.The other is lipoxygenase(Sl LOX)-dependent,which is regulated by one TF from the HD-Zip family,controlling the synthesis of hexanal and(Z)-2-heptenal in fatty acid metabolism.Dual-luciferase assay confirmed the binding of b HLH and AP2/ERF to their structural genes.The findings of this study provide new insights into volatile flavor formation in tomato fruit,which can be useful for tomato flavor improvement.
基金supported by the R&D Projects in Key Areas of Guangdong Province(2023B0202080003)the National Natural Science Foundation of China(32472272,32302135,32072291)+1 种基金“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2023C02006)Youth S&T Talent Support Programme of Guangdong Provincial Association for Science and Technology(SKXRC202401)。
文摘Edible oils derived from aquatic products are rich in lipids beneficial to human health.However,the volatile flavor characteristics of flesh oil and liver oil from Doederleinia berycoides remain unclear.In this study,flesh oil and liver oil were extracted from Doederleinia berycoides,revealing different fatty acid compositions and contents.Lipidomics analysis identified a total of 124 differential lipids between the flesh oil and liver oil,including 42 glycerophospholipids(GPs),33 glycerolipids(GLs),23 free fatty acids(FAs),13 sphingolipids(SPs),10 sterols(STs),and 3 prenol lipids(PRs).Analysis using HS-GC-IMS identified 12 key volatile compounds that significantly contributed to the distinct volatile flavors of the flesh and liver oils.The volatile flavors originated from these volatile compounds,which had different Relative Odor Activity Values(ROAVs).Further results from HSSPME-GC-MS showed that the volatile flavors of the flesh oil and liver oil were respectively attributed to 64 and 35 volatile compounds,each with unique key volatile compounds exhibiting different ROAVs.There were significant positive or negative correlations between 18 key differential lipids and 24 volatile compounds in both flesh oil and liver oil.Therefore,the complex lipid profiles are responsible for the unique volatile flavors of flesh oil and liver oil,and the differential lipids play a central role in their volatile flavor formation.These findings provide a foundation for understanding the volatile flavor differences in fish oils and hold promise for further exploration of the molecular mechanisms underlying oil volatile flavors.
基金supported by the National Natural Science Foundation of China(32001824,31901813,32001827)。
文摘SARS-CoV-2,particularly the Omicron variant,often leads to flavor perception dysfunction in infected individuals,making a comprehensive understanding of its duration and recovery patterns a critical part of disease management.This study surveyed a cohort of 199 mildly-to-moderately affected SARS-CoV-2 Omicron-infected patients,focusing on the alterations in their olfaction,taste,and chemesthesis perception.Further,a subset of 36 participants(18 healthy and 18 infected)underwent sensory evaluations to check the variation of umami taste sensitivity.The results demonstrated that most of the infected cohort experienced chemosensory disorders,with the recovery period varying between one week and over a month.Intriguingly,the severity of flavor perception changes during infection significantly correlated with the length of the recovery period.Furthermore,this study explored the specific manifestations of flavor perception dysfunction,potential contributing factors,and potential mechanistic explanations for chemosensory disorders.These include local damage,inflammatory responses,and virus-induced neural damage.However,this study revealed no significant change(P>0.05)in umami taste sensitivity among infected patients 55 days post-infection.While this research faces limitations related to its self-reported,cross-sectional design,and regional focus,it offers valuable insights into the multifaceted impact of COVID-19,particularly the Omicron variant,on chemosensory perception.
基金funded by the Key Science and Technology Plan Project of Haikou 546(2023–2024).
文摘Background Pork quality and flavor are critical determinants of consumer preference,yet the role of gut microbiota in shaping meat characteristics remains underexplored.In this study,we investigated how a probiotic consortium(FAM:Lactobacillus acidophilus and Bacillus subtilis)modulates the gut-muscle axis to enhance pork flavor.Results In finishing pigs,FAM supplementation significantly increased flavor-associated nucleotides and umamienhancing amino acids in longissimus dorsi muscle.Metagenomic analysis revealed FAM-driven enrichment of glycandegrading Prevotella and short-chain fatty acid-producing Phascolarctobacterium,accompanied by reduced antibiotic resistance genes and virulence factors.Spearman correlation linked Prevotella copri abundance with elevated muscle amino acids,suggesting microbial-encoded CAZymes as key mediators.Conclusions This study provides the first evidence that probiotic-induced gut microbiota remodeling enhances pork flavor through metabolic cross-talk along the gut-muscle axis.The findings suggest a novel strategy for improving pork quality via dietary interventions targeting gut microbiota.
基金supported by the National Natural Science Foundation of China(Nos.12205259 and 12147101)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)with No.G1323523064.
文摘In this study,we performed a systematic analysis of the multiplicity dependence of hadron production at mid-rapidity(|y|<0.5),ranging from the light to the charm sector in proton-proton(pp)collisions at√s=13 TeV.This study used a multi-phase transport(AMPT)model coupled with PYTHIA8 initial conditions.We investigated the baryon-to-meson and the strange-to-non-strange meson ratios varying with the charged particle density.By tuning the coalescence parameters,the AMPT model provides a reasonable description of the experimental data for the inclusive production of both light and charm hadrons,comparable to the string fragmentation model calculations with color reconnection effects.Additionally,we analyzed the relative production of hadrons by examining the self-normalized particle ratios as a function of the charged hadron density.Our findings suggest that parton evolution effects and the coalescence hadronization process in the AMPT model result in a strong flavor hierarchy in the multiplicity dependence of the baryon-to-meson ratio.Furthermore,our investigation of the p_(T) differential double ratio of the baryon-to-meson fraction between high-and low-multiplicity events revealed distinct modifications to the flavor associated baryon-to-meson ratio p_(T) shape in high-multiplicity events when comparing the coalescence hadronization model to the color reconnection model.These observations highlight the importance of understanding the hadronization process in high-energy pp collisions through comprehensive multiplicity-dependent multi-flavor analysis.
基金supported by the central government and guides local funds for science and technology development(2022ZY0109).
文摘The naturally fermented Inner Mongolian cheese’s flavor and nutritional value make it a popular choice among customers.In this work,to create multi-functional peptides that have taste and biological activity,peptidomics and bioinformatics were used to screen flavor peptides from Inner Mongolian cheese and further assess their antioxidant and angiotensin I-converting enzyme(ACE)inhibitory properties.According to sensory data,YH8 and IL7 had detectable bitter tastes with low thresholds of 0.03 and 0.06 mmol/L,respectively.With an umami threshold range of 0.24‒0.81 mmol/L,VQ6,FK13,HP13 and QT14 exhibited a range of flavors dominated by umami,including sweet,bitter,salty,sour and kokumi.Antioxidant activity wise,YH8,VQ6,HP13 and QT14 were well represented.The above-mentioned peptides all had some ACE inhibitory effect.The bitter peptide IL7(IC_(50)=0.08 mmol/L)had the highest level of ACE inhibitory activity,followed by YH8(IC_(50)=0.33 mmol/L).These multi-functional peptides,which have been assessed for bioactive and taste features in Inner Mongolian cheese,may have positive impacts on health and harmonize the cheese’s overall flavor.These results suggest that some flavor peptides produced in fermented foods might be with bioactivities while providing a basis for the exploration and application of multi-functional peptides.
基金the National Natural Science Foundation of China:Research on the Identification of Cold-Hot Properties in Lamiaceae Herbs based on Infrared Spectroscopy Holistic Component Characteristic Markers(No.81673622)the Anhui Provincial Natural Science Foundation:Research on the Extraction and Identification of Holistic Compositional Characteristics of Warm-Hot Properties of Lamiaceae Herbs(No.1508085MH202)the Anhui Provincial Natural Science Research Project of Higher Education:Research on the Material Basis of Cold-Hot Properties of Lamiaceae Herbs based on Pattern Recognition and Energy Metabolism(No.2023AH050773)。
文摘OBJECTIVE:To study the correlation between five flavors(Wuwei)and the chemical substances of Chinese herbal medicines in Lamiaceae and to establish five flavors identification models.METHODS:A total of 245 herbs belonging to the Lamiaceae family were selected from the Pharmacopoeia of the People's Republic of China 2020 and Chinese Materia Medica.A database of the chemical substances of these herbs was constructed,with the chemical substances obtained from the professional literature and databases.A three-level classification system of the material components was established on the basis of the molecular structure and biosynthetic pathway of these substances.Apriori association rule analysis and feature selection were employed to obtain the material basis of the five flavors.A multiple logistic regression analysis method was employed to establish identification models for the five flavors.RESULTS:The association rule analysis revealed 34 high-value groups and 30 specific groups for the main flavors,and 39 high-value groups and 36 specific groups for the combined flavors.Sixteen groups of chemical components were the decisive groups for the main flavors,and 13 groups were the decisive groups for the combined flavors.Multiple logistic regression analysis was used to successfully establish identification models with an overall accuracy of 88.8%for the main flavors and 87%for the combined flavors.CONCLUSIONS:Five flavors are often characterized by the interaction of multiple classes of substances,and a single class of substances cannot be used to characterize flavors.The organic combination of multiple classes of substances is the material basis of the five flavors,both the main and combined flavors.Significant differences exist in the material basis of the main and combined flavors,suggesting that the“natural flavor”and“functional flavor”may have different material bases.
基金supported by grant from the National Key Research and Development Program of China(2021YFC2101402)the National Natural Science Foundation of China(31972064,32302030)the China Postdoctoral Science Foundation(2023M731334)。
文摘Fermented chili products are popular traditional fermented foods around the world.However,differences in microbial communities in fermented chilies from different regions and how they affect the flavor compounds in chili fermentation have not been reported.In this study,the dynamics of flavor compounds and microbial communities in fermented chilies from Sichuan,Guizhou,and Hunan were systematically investigated by macro-genome sequencing,solid phase microextraction-gas chromatograph-mass spectrometry(SPME-GC-MS),electronic nose,and electronic tongue techniques.Simultaneously,the microbial metabolic mechanisms and the relationship between flavor compounds and microbiome were unraveled through staged and simulated fermentation analysis.The results showed that 53 chemical odorants,including alcohols,esters,aldehydes,and acids,were identified as chemical markers to differentiate the regional samples.A total of 12 microbial species,including Staphylococcus xylosus,unclassified Staphylococcus species,Weissella confusus,Lactococcus cremoris,Lactococcus garvieae,Lactiplantibacillus sakei,Pediciococcus propionicigenes,Pediciococcus idahonensis,Pediciococcus aciditolerans,Nocardioides antri,Debaryomyces hansenii,and Colletotrichum scovillei,were identified as microbial markers to differentiate the regional samples.Correlation analysis showed that Lactobacillaceae was associated with fruity,floral,spicy,and fatty aromas.The electronic nose and tongue analysis results showed that 9 flavor and 8 taste indicators significantly differed between regional samples(P<0.05).Additionally,flavor compounds and microbial diversity were robust under initial selection stress and showed higher diversity under metabolome-microbiome interactions.Importantly,simulated fermentation confirmed that metabolome-microbiome interactions drove the shift in microbial structure,metabolism,and flavor in regionally fermented chilies.These results provide insights into the succession of microbial communities and the formation of flavor compounds in chili fermentation,which may enable the future replication of fermented foods with the same flavor.
基金supported by Project of Renovation Capacity Building for the Young Sci-Tech Talents Sponsored by Xinjiang Academy of Agricultural Sciences(Grant No.xjnkq-2021011)Key Research and Development Program of Hainan Province(Grant No.ZDYF2025XDNY089)+2 种基金Project of Fund for Stable Support to Agricultural Sci-Tech Renovation(Grant No.xjnkywdzc-2023001-35)Guangxi Agricultural Science and Technology Project,China Agriculture Research System of MOF and MORA(CARS-25)the Fundamental Research Funds for the Central Universities(Grant No.2662024JC004)。
文摘Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influencing consumer preference.These VOCs are mainly derived from amino acids,fatty acids,and terpenoid pathways(Chen et al.,2023).Esters contribute to fruity and sweet notes,whereas terpenes and C_(9) aldehydes/alcohols impart floral and melon-like aromas,respectively(Mayobre et al.,2024).
基金supported in part by the National Natural Science Foundation of China under Grant Nos.11875157,12147214the Doctoral Start-up Fund of Liaoning Normal University under Grant No.2024BSL018the Universitylevel National Research Project Cultivation Program under Grant No.2024170。
文摘The massless dark photon~γ can only interact with the Standard Model(SM)sector via higherdimensional operators.In this letter,we investigate its production associated with the ordinary photonγfrom the lepton flavor violation(LFV)process l_(i)→l_(j)γγ and di-production from the LFV process l_(i)→l_(j)γγ induced by dipole operators.Comparing the obtained numerical results with the corresponding experimental measurements,we obtain the constraints on the effective couplings of γ with the SM charged leptons.The upper limit of the effective coupling|DLμe|2+|DRμe|2coming from the process μ→e~γγis looser than the processμ→eγ by about one order of magnitude.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(12)3080)~~
文摘This study was conducted to investigate the recipe and process of instant pickle by multiple steps with dry daylily as a raw material, and an orthogonal test was adopted to obtain the optimal recipe and process. The pickling process of the instant flavored daylily was conducted at an optimal crisp-keeping Ca Cl2 concentration at 0.050%, cooking time of 5 min, pickling time of 6 h and a salt concentration of 4%. The effects of various factors on product taste were in order of salt concentrationcooking timepickling timeCa Cl2 concentration.The obtained product has the characteristics of strong fragrance, crisp delicious taste and unique flavor with stomachic effect.
基金support from the National Key Research and Development Program of China(2022YFD2101101)the Modern Agricultural(Tea)Industry Technology System of Fujian Province,China([2021]No.90)+2 种基金the Guiding Project of Science and Technology Department in Fujian Province,China(2022N0031)the Special Fund Program for Science and Technology Innovation of Fujian Agriculture and Forestry University,China(KFB23203)the Special Fund for Science and Technology Innovation of Fujian Zhang Tianfu Tea Development Foundation,China(FJZTF01)。
文摘Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.This study employed targeted metabolomics and chemometrics to investigate how shaping techniques affect the flavor of milk-flavored white tea(MFWT).The results showed that the tea cake sample with the shortest pressing time(Y90)has the highest amino acid content and milky aroma intensity.There were variations in amino acids,catechins,and soluble sugars among MFWT samples with different shaping techniques.The total contents of amino acids and catechins in tea cake sample(Y90)were significantly lower than those in the loose tea sample(SC)and bundle-like tea sample(SG),while the total sugar content was significantly higher than that in SC(P<0.05).Additionally,the content of volatiles presenting milky aroma(VIP&OAV>1)in Y90 remained lower relative to SC and SG(P<0.05),but the proportion was not different from that in SC and SG,minimally affecting the overall flavor.The short-time pressing method might be suitable for mass production of MFWT.These findings provide insights into improving the tightness of the appearance of MFWT with minimal impact on tea flavor.
基金National Science Foundation of China(Project No.81430094 and No.81603311)Beijing Municipal Natural Science Foundation(No.7164239).
文摘Objective:Explicating the property and action of traditional Chinese medicine(TCM)in the perspectives of modern science deepens the insight into the property of TCM,and provides the basis for new drug discovery and clinical therapy.In this study,we investigated the relationship between transient receptor potential melastatin 8(TRPM8)and pungent flavor using three-dimensional pharmacophores based on virtual screening methods.Methods:Firstly,an inhouse database was established to identify the related pharmacological action according to the traditional Chinese herbs expressing an action of promoting blood circulation.Then,several therapeutic targets,3-hydroxy-3-methylglutaryl-coenzyme A reductase(HMG-CoAR),cholesteryl ester transfer protein(CETP),Niemann-Pick C1-Like 1(NPC1L1)and platelet-activating factor receptor(PAFR),were selected to screen traditional Chinese herbs,and the common virtual screening hits with various hit scores providing data to reveal the correlation among TRPM8 and therapeutic targets.Results:According to the screening results,TRPM8 agonists were able to identify the effective components of pungent herbs and TRPM8,which shares the common virtual screening hits with the therapeutic targets,was considered to be related to the action of pungent taste.Conclusion:The novel ideas and methods in this study are beneficial to unveil the scientific relationship between a TCM property and its action.
文摘Smoking is widely used in fish processing for the color and flavor. Smoke flavorings have evolved as a successful alternative to traditional smoking. The hazards of the fish products treated by liquid-smoking process are discussed in this review. The smoke flavoring is one important ingredient in the smoke-flavored fish. This paper gives the definition of smoke flavorings and the hazard of polycyclic aromatic hydrocarbons (PAHs) residue in the smoke flavorings on the market. It gives also an assessment of chemical hazards such as carcinogenic PAHs, especially Benzo-[α]pyrene, as well as biological hazards such as Listeria monocytogenes, Clostridium botulinum, histamine and parasites in smoke-flavored fish. The limitations in regulations or standards are discussed. Smoke flavored fish have lower content of PAHs as compared with the traditional smoking techniques if the PAHs residue in smoke flavorings is controlled by regulations or standards.
文摘The main aroma component of Luzhou-flavor Liquor is ethyl caproate, which is combined with appropriate amount of ethyl butyrate, ethyl acetate, ethyl lactate and so on. By adding the marine bacillus BC-2 (Accession number: MK811408) to substrate sludge, the bacillus complex bacterial liquid (pit Mud Functional Bacterial liquid) has been modified. The complex bacterial liquid was used in the production of Luzhou-flavor Liquor and it dramatically promoted the content of health-beneficial ingredients in the new workshop. These results demonstrated that the marine bacillus BC-2 can effectively improve the quality and health benefit of Luzhou-flavor Liquor.
文摘The objective of this study was to test the essential oil-emitted flavor (volatile) of lavender by bacteria killing potency using Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), enterohemorrhagic E. coli O157:H7, Pseudomonas aeruginosa and Candida albicans. Antibacterial activity was assessed by creating of the bacterial growth curve in the liquid medium cultivation and the growth inhibition on the agar plate cultivation. Citronellal, one of compounds in Rosa rugose oil, was used as a positive control for comparison in activity. The results showed that lavender and citronellal flavor (volatile) or oil respectively demonstrated bacteria killing effect in both analytical manners. However, P. aeruginosa resisted bacteria killing potency of lavender (citronellal) oil or oil-emitted flavor. It could be concluded that both lavender oil-emitted flavor and oil showed bacteria killing potency. Lavender oil (or oil-emitted flavor) will be expected to apply for the patient waiting room to disinfect in air along with the mental relaxation of the patient.
文摘The translation practice report aims to translate and analyze the natural flavors and the Moon Festival of Yunnan Farming Culture Museum.Under the Guidance of the functional equivalence theory,the author of this translation practice report analyzes the source text from three aspects:lexical equivalence,syntactic equivalence and textual equivalence.This translation practice report has five parts.The first part is the original text and the translated version.The second introduces the background and significance of the report.The third introduces the whole translation process.The fourth part is the case analysis,which illustrates the difficulties,emphases and solutions in translation.The fifth is a summary of translation practice,including the translator's gains,shortcomings and improvement direction.
基金supported by the State Key Program of National Natural Science of China(No.31330060)the National Natural Science Foundation of China(No.31571865)
文摘Shrimp paste is a type of condiments with high nutritional value.However,the flavors of shrimp paste,particularly the non-uniformity flavors,have limited its application in food processing.In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes,five kinds of typical commercial products were evaluated in this study.The differences in the volatile composition of the five products were investigated.Solid phase micro-extraction method was employed to extract the volatile compounds.GC-MS and electronic nose were applied to identify the compounds,and the data were analyzed using principal component analysis(PCA).A total of 62 volatile compounds were identified,including 8 alcohols,7 aldehydes,3 ketones,7 ethers,7 acids,3 esters,6 hydrocarbons,12 pyrazines,2 phenols,and 7 other compounds.The typical volatile compounds contributing to the flavor of shrimp paste were found as follows:dimethyl disulfide,dimethyl tetrasulfide,dimethyl trisulfide,2,3,5-trimethyl-6-ethyl pyrazine,ethyl-2,5-dimethyl-pyrazine,phenol and indole.Propanoic acid,butanoic acid,furans,and 2-hydroxy-3-pentanone caused unpleasant odors,such as pungent and rancid odors.Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species.These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method,enhance the accuracy of identification,and provide useful information for sensory research and product development.
基金The authors would like to thank the financial support from Central Public-interest Scientific Institution Basal Research Fund(Grant No.Y2019XK18,Y2019PT17-02)Funding for Outstanding Talents of the Ministry of Agriculture of China and the Innovation Project of Chinese Academy of Agricultural Sciences(Grant No.CAAS-ASTIP-2016-AII-02).
文摘Fuji apple(Malus×domestica Borkh.)is a popular fruit cultivar and occupies an important position in the fruit market due to its excellent flavor and storage quality.Ethylene emission can induce respiration,which would reduce postharvest quality and increase storage losses.In order to maintain fruit quality and extend shelf life,apples are usually stored in a low-temperature environment after harvest to reduce the formation of ethylene.Volatile aroma components are regarded as one of the most important aspects of flavor quality and a key factor for apple quality grading and customer satisfaction.Ethylene emission and its relationship with volatile aromas during low temperature,however,have not been determined.In this study,the dynamic changes of volatile aroma compounds of Fuji apples stored at 4°C were detected and analyzed for 42 days.The variation of ethylene released from Fuji apple was studied correspondingly.The results showed that ethyl butyrate,ethyl caproate,ethyl 2-methylbutyrate and 2-methylbutyl acetate were the main aroma components of Fuji apple.The change in ethylene emission and the normalized peak area of volatile aroma compounds exhibited a similar tendency that increased significantly from the 3rd day to the peak on the 14th day and then decreased;there was a positive linear correlation between them with a correlation coefficient of 0.79(P<0.05).Therefore,ethylene release can be used as a potential indicator for evaluation of volatile aroma compounds in apples.Using ethylene emission as an indicator could reduce the difficulty and complexity of volatile aroma evaluation,which could be a new non-destructive inspection choice for apple flavor quality assessment.