Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-ze...Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.展开更多
With the most advanced and sophisticated technologies and equipment,NYBELT is one of the largest manufacturers of flat transmission belts in the world.Under the Certified Quality,Environment,Occupational Health&Sa...With the most advanced and sophisticated technologies and equipment,NYBELT is one of the largest manufacturers of flat transmission belts in the world.Under the Certified Quality,Environment,Occupational Health&Safety,and Energy Standardized ISO Management System,NYBELT can produce all kinds of flat transmission belts,roller coverings and conveyor belts applicable to textile,printing&packaging,electronics and other industries.Due to the superior quality and the reasonable prices,we have become well known in providing high quality belting products and excellent service to customers all over the world.Our success in the past gives us the confidence to look into the future with great expectations.展开更多
In a peach orchard in Lyuxiang Town,Jinshan District,Shanghai,youth delegates from 13 countries,officials from the Food and Agriculture Organization of the United Nations(FAO),and agricultural heritage experts were im...In a peach orchard in Lyuxiang Town,Jinshan District,Shanghai,youth delegates from 13 countries,officials from the Food and Agriculture Organization of the United Nations(FAO),and agricultural heritage experts were impressed by sweet and juicy Jinshan flat peaches.Jinshan has a history of flat peach cultivation that spans hundreds of years dating back to the Yuan Dynasty(1271-1368).展开更多
The Lieb lattice, characterized by its distinctive Dirac cone and flat-band electronic structures, hosts a variety of exotic physical phenomena. However, its realization remains largely confined to artificial lattices...The Lieb lattice, characterized by its distinctive Dirac cone and flat-band electronic structures, hosts a variety of exotic physical phenomena. However, its realization remains largely confined to artificial lattices. In this work, we propose the concept of a Lieb electride, where the non-bound electrons gather at the middle edges,behaving as the quasi-atoms of a Lieb lattice, enabling the emergence of flat bands. Using crystal structure prediction method MAGUS and first-principles calculations, we predict a stable candidate, Ca_(2)I, at ambient pressure. Distinct from conventional electrides with localized electrons at cavity centers, Ca_(2)I features interstitial electrons situated at cavity edges. The resultant flat bands lie close to the Fermi level, giving rise to a pronounced peak in the density of states and leading to Stoner-type ferromagnetism. With increasing pressures, we observe quantum phase transitions from ferromagnetic to non-magnetic and finally to antiferromagnetic orders in Ca_(2)I.Intriguingly, superconductivity emerges in the antiferromagnetic region, suggesting potential competition between these correlated states. Our study not only extends the concepts of electrides but also provides a novel strategy for realizing Lieb lattices through non-bound electrons. This work establishes Ca_(2)I as a promising platform for exploring flat-band physics and correlated electronic states, opening avenues for novel quantum phenomena in electride-based materials.展开更多
The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based ca...The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material.展开更多
This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Div...This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Diverse volume fractions(1%, 2%, and 3%) of Al_(2)O_(3)-water nanofluids are meticulously prepared and analyzed. The essential physical properties of these nanofluids, critical for evaluating their thermal and flow characteristics, have been comprehensively assessed. From a quantitative perspective, numerical simulations are employed to predict the Nusselt number(Nu) and friction factor(f). The empirical findings reveal intriguing trends: the friction factor experiences an upward trend with diminishing velocity, attributed to heightened molecular cohesion. Conversely, the friction factor demonstrates a decline with diminishing volume fractions, a consequence of reduced particle size. Both the nanofluid's viscosity and heat transfer coefficient exhibit a rise in tandem with augmented volume flow rate and concentration gradient. Notably, the simulation results harmonize remarkably well with experimental data. Rigorous validation against prior studies underscores the robust consistency of these outcomes. In the pursuit of augmenting heat transfer, a volume fraction of 3% emerges as particularly influential, yielding an impressive 53.8% enhancement. Minor increments in the friction factor, while present, prove negligible and can be safely overlooked.展开更多
The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,tra...The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,traditional coolants are starting to fall short.Nanofluids,which involve tiny nanoparticles dispersed into standardcooling liquids,offer a new solution by significantly improving heat transfer capabilities.The article categorizesthe different types of nanofluids(ranging from those based on metals and metal oxides to carbon materials andhybrid combinations)and examines their effects on the improvement of radiator performance.General consensusexists in the literature that nanofluids can support better heat dissipation and enable accordingly the developmentof smaller and lighter radiators,which require less coolant and allow more compact vehicle designs.However,thisreview demonstrates that the use of nanofluids does not come without challenges.These include the long-termstability of these fluids and material compatibility issues.A critical discussion is therefore elaborated about thegaps to be filled and the steps to be undertaken to promote and standardize the use of these fluids in the industry.展开更多
Flat electronic bands in condensed matter provide a rich avenue for exploring novel quantum phenomena. Here, we report an optical spectroscopy study of a topological hourglass semimetal Nb_(3)SiTe_(6) with the electri...Flat electronic bands in condensed matter provide a rich avenue for exploring novel quantum phenomena. Here, we report an optical spectroscopy study of a topological hourglass semimetal Nb_(3)SiTe_(6) with the electric field of the incident light parallel to its crystalline ab-plane. The ab-plane optical conductivity spectra of Nb_(3)SiTe_(6) single crystals exhibit a remarkable peak-like feature around 1.20 eV, which is mainly contributed by the direct optical transitions between the two ab-initio-calculation-derived flat bands along the momentum direction Z–U. Our results pave the way for investigating exotic quantum phenomena based on the flat bands in topological hourglass semimetals.展开更多
We propose a method to measure the flatness of an object with a petal-like pattern generated by the interference of the measured orbital angular momentum(OAM)beam and the reference OAM beam which carries the opposite ...We propose a method to measure the flatness of an object with a petal-like pattern generated by the interference of the measured orbital angular momentum(OAM)beam and the reference OAM beam which carries the opposite OAM state.By calculating the difference between the petal rotation angle without/with the object,the thickness information of the object,and then the flatness information,can be evaluated.Furthermore,the direction of the object’s flatness can be determined by the petal’s clockwise/counterclockwise rotation.We theoretically analyze the relationship between the object’s thickness and petal rotation angle,and verify the proposed method by experiment.The experimental results show that the proposed method is a high precision flatness measurement and can obtain the convex/concave property of the flatness.For the 1.02 mm glass sample,the mean deviation of the flatness is 1.357×10^(-8) and the variance is 0.242×10^(-16).For the 0.50 mm glass sample,the mean deviation of the flatness is 1.931×10^(-8) and the variance is 2.405×10^(-16).Two different topological charges are adopted for the 2.00 mm glass sample,and their flatness deviations are 0.239×10^(-8)(ℓ=1)and 0.246×10^(-8)(ℓ=2),where their variances are 0.799×10^(-18)(ℓ=1)and 0.775×10^(-18)(ℓ=2),respectively.It is shown that the flatness measured by the proposed method is the same for the same sample when different topological charges are used.All results indicate that the proposed method may provide a high flatness measurement,and will be a promising way to measure the flatness.展开更多
With the increasing demand for higher-quality flatness in downstream industries,the optimization of rolling processes and parameters has become a critical area of research.The effects of rolling force and front tensio...With the increasing demand for higher-quality flatness in downstream industries,the optimization of rolling processes and parameters has become a critical area of research.The effects of rolling force and front tension adjustments on flatness were examined systematically under various rolling process conditions.By embedding the Johnson-Cook constitutive model into the ABAQUS simulation platform through a user-defined subroutine,a series of three-dimensional finite element models for different rolling scenarios were developed.Simulation results indicate that,under all four rolling process conditions,edge strain consistently exceeds center strain,with forward-driven rolling exhibiting greater edge strain than reverse-driven rolling.Along the strip thickness direction,reverse-driven rolling results in higher strain compared to forward-driven rolling.Moreover,in single roll driven rolling,the upper surface of the strip experiences higher strain than the lower surface,while the reverse trend is observed in double roll driven rolling.As the rolling force increases from 1000 to 5000 kN,the strain difference in the width and thickness directions of the strip varies significantly under double roll driven rolling and double roll reverse-driven rolling,with change slopes of 5.74×10^(-6) and-2.85×10^(-6),respectively.Double roll driven rolling effectively prevents the deterioration of flatness along the rolling direction.Furthermore,as the front tension increases from 60 to 100 MPa,double roll reverse-driven rolling significantly suppresses strain differentials in the width,thickness,and rolling directions,with change slopes of-6.73×10^(-4),1.22×10^(-5),and-1.29×10^(-5),respectively.Eventually,a predictive model is established,integrating rolling process,rolling force,and front tension,thereby providing a theoretical framework for advancing the precision and efficiency of strip rolling processes.展开更多
In this paper,we will discuss the almost global existence result for d-dimensional fractional nonlinear Schrodinger equation on flat torus,which is based on BNF technique,the tame property and the analysis of the spec...In this paper,we will discuss the almost global existence result for d-dimensional fractional nonlinear Schrodinger equation on flat torus,which is based on BNF technique,the tame property and the analysis of the spectrum of(-Δ)^(s).展开更多
This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating tra...This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating transducer in a ring excitation manner.The factors affecting the generation of Bessel-like collimated beams are investigated by theoretical analysis,numerical simulation and experimental methods.The results indicate that Bessel-like wave can be generated by a thin circular plate with fixed boundaries.The third-order mode of the circular plate can be modified to generate a collimated beam with suppressing side lobes when it is excited in a ring excitation manner and the excitation position lies between the first two nodal circles of the plate.As the excitation radius increases,the main lobe width of the resulting Bessel-like collimated beam decreases,the extent of the focusing region increases,and the amplitude of the side lobes initially increases and then decreases.Based on the simulation results,a prototype Bessel-like collimated beam generation system is made and measured experimentally.The experimental results are in good agreement with the numerical results.The Bessel-like collimated beam can be generated by the proposed system,which has potential application in the fields of long-range detection,imaging of highly attenuated materials,and airflow acceleration.展开更多
Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety,particularly in cold and humid environments.This study conducts numerica...Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety,particularly in cold and humid environments.This study conducts numerical simulations of ice formation on thin flat plates using CFD and FENSAP-ICE,exploring how air temperature,wind velocity,and angle of attack(AOA)affect icing behavior and aerodynamic characteristics.Results indicate that ice thickness increases linearly over time.Rime ice forms at low temperatures due to immediate droplet freezing,whereas glaze ice develops at higher temperatures when a water film forms and subsequently refreezes into protruding ice horns;under identical conditions,rime ice consistently produces thicker ice layers than glaze ice.Increasing wind speed substantially enhances ice growth and coverage,while speeds as low as 1 m/s result in minimal accretion.Changes in AOA shift the icing region toward the pressure side,and AOAs of equal magnitude but opposite sign yield symmetrical ice accretion patterns and identical maximum thickness values.After icing,the plate’s leading edge becomes smoother,slightly reducing drag while increasing lift and moment coefficients.These findings highlight the dominant roles of temperature,wind speed,and AOA in determining ice morphology,extent,and aerodynamic impact,providing valuable insights for predicting icing effects and developing mitigation strategies for structures operating in icing-prone regions.展开更多
Objective:To explore and analyze the clinical efficacy of flat mesh tension-free hernioplasty in the treatment of patients with inguinal hernia.Methods:A total of 60 patients with inguinal hernia were included and equ...Objective:To explore and analyze the clinical efficacy of flat mesh tension-free hernioplasty in the treatment of patients with inguinal hernia.Methods:A total of 60 patients with inguinal hernia were included and equally divided into an observation group(30 cases,flat mesh tension-free hernioplasty)and a control group(30 cases,mesh plug tension-free hernioplasty)based on differences in surgical plans.The visual analog scale(VAS)for postoperative pain,inflammatory markers(C-reactive protein,white blood cell count),and complication rates were compared between the two groups.Results:At 24 and 48 hours postoperatively,the VAS scores in the observation group were significantly lower than those in the control group(P<0.05).At 24 hours postoperatively,the levels of CRP and WBC were also lower in the observation group(P<0.05).The complication rate was slightly lower in the observation group(P>0.05).Conclusion:Flat mesh tension-free hernioplasty for inguinal hernia can alleviate postoperative pain and suppress inflammatory responses,with fewer complications,making it suitable for promotion at primary healthcare facilities.展开更多
This study presents a simplified numerical approach for evaluating the thermal performance of louvered fin and flat tube heat exchangers(LFFTHXs),which are critical in many thermal management applications but difficul...This study presents a simplified numerical approach for evaluating the thermal performance of louvered fin and flat tube heat exchangers(LFFTHXs),which are critical in many thermal management applications but difficult to model due to their complex geometries.The proposed method uses an equivalent convective heat transfer coefficient to represent the fins,significantly reducing the computational requirements of the simulations.Validation against the effectiveness-number of transfer units method showed average deviations of 4.4%for the novel louvered fin with two combined holes and 9.5%for conventional configurations,confirming the accuracy of the method.Further application to two-phase refrigerant scenarios using experimental data demonstrated the robustness of the method and its suitability for practical design and optimization of LFFTHXs.The approach not only improves the feasibility of thermal analysis in industrial applications but also provides a foundation for future research into more efficient heat exchanger designs.展开更多
In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the ...In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the complexity of transportation costs and demand,this study presents a novel method that offers flexible routing alternatives to manage these complexities.When real-world variables such as fluctuating costs,variable capacity,and unpredictable demand are considered,traditional transshipment models often prove inadequate.To overcome these challenges,we propose an innovative fully fuzzy-based framework using LR flat fuzzy numbers.This framework allows for more adaptable and flexible decision-making in multi-objective transshipment situations by effectively capturing uncertain parameters.To overcome these challenges,we develop an innovative,fully fuzzy-based framework using LR flat fuzzy numbers to effectively capture uncertainty in key parameters,offering more flexible and adaptive decision-making in multi-objective transshipment problems.The proposed model also presents alternative route options,giving decisionmakers a range of choices to satisfy multiple requirements,including reducing costs,improving service quality,and expediting delivery.Through extensive numerical experiments,we demonstrate that the model can achieve greater adaptability,efficiency,and flexibility than standard approaches.This multi-path structure provides additional flexibility to adapt to dynamic network conditions.Using ranking strategies,we compared our multi-objective transshipment model with existing methods.The results indicate that,while traditional methods such as goal and fuzzy programming generate results close to the anti-ideal value,thus reducing their efficiency,our model produces solutions close to the ideal value,thereby facilitating better decision making.By combining dynamic routing alternatives with a fully fuzzybased approach,this study offers an effective tool to improve decision-making and optimize complex networks under real-world conditions in practical settings.In this paper,we utilize LINGO 18 software to solve the provided numerical example,demonstrating the effectiveness of the proposed method.展开更多
This study shows a technical,bioclimatic,and sustainable analysis of the first demountable house built entirely from glass components,Vitrohouse.The technical analysis details the construction challenges overcome to c...This study shows a technical,bioclimatic,and sustainable analysis of the first demountable house built entirely from glass components,Vitrohouse.The technical analysis details the construction challenges overcome to create a demountable house using only flat glass for all components(foundations,slabs,supporting structure,beams,roof,envelope,furnishings,kitchen fixtures,appliances).Secondly,we analyze the thermal and bioclimatic behavior of this demountable all-glass house to evaluate its energy efficiency.We also assess the contribution of Vitrohouse’s bioclimatic design to its sustainability level,using 11 of the most internationally recognized GBRSs(Green Building Rating Systems),demonstrating that it achieves a higher degree of sustainability than a conventional,non-bioclimatic home of the same size.Thirdly,we analyze the contribution of Vitrohouse’s demountable nature,showing that it has a higher level of sustainability than a conventionally built house.Finally,the sustainable analysis of its demountability is quantified using 11 GBRSs.The results show that it is perfectly feasible to construct buildings solely from flat glass,achieving high energy efficiency and sustainability.Furthermore,the glass components can be easily disassembled and reused,or recycled to manufacture new components with minimal energy consumption.展开更多
The flattening of the internal governance of colleges and universities needs to follow the principles of democratic participation,equivalence of rights and responsibilities,and efficiency priority.The structural desig...The flattening of the internal governance of colleges and universities needs to follow the principles of democratic participation,equivalence of rights and responsibilities,and efficiency priority.The structural design should be comprehensively optimized and adjusted.The power distribution should follow the principle of coordination and balance between academic power and administrative power.The operation mechanism should focus on the scientificity and democracy of decision-making.The construction of supporting systems requires the improvement of the performance appraisal system as well as the incentive and supervision mechanisms.展开更多
The quantum phase transition between Z_(2) plaquette valence bound solid(PVBS) and superfluid(SF) phases on the planar pyrochlore lattice(square ice) is under debate. To gain further insight, here, we focus on the dyn...The quantum phase transition between Z_(2) plaquette valence bound solid(PVBS) and superfluid(SF) phases on the planar pyrochlore lattice(square ice) is under debate. To gain further insight, here, we focus on the dynamical features of the hard-core Bose–Hubbard model on this lattice and study the excitation spectra by combining stochastic analytic continuation and quantum Monte Carlo simulation. In both PVBS and SF phases,a flat band with bow-tie structure is observed and can be explained by certain symmetries. At the transition point,the spectra turn to be continuous and gapless. A(2+1)-dimensional Abelian–Higgs model with mixed 't Hooft anomaly is proposed to describe the transition, where the anomaly matching predicts that the deconfinement can exist on the domain walls. From the snapshot of the spin configuration in real space, we found the existence of the domain wall. We also found that the spectrum along a specific path in momentum space from PVBS phase to the transition point can be well described by an XXZ spin chain, and the critical theory of XXZ spin chain matches the anomaly. The two-spinon continuum along this specific path implies additional domain walls(point defect) can emerge in the domain walls(line defect) and take the role of deconfinement at the transition point.展开更多
The loop heat pipe with a flat evaporator is mainly divided into two forms:rectangular evaporator and disk-shaped evaporator.The rectangular evaporator has advantages such as low heat leakage,a thin shell,and a large ...The loop heat pipe with a flat evaporator is mainly divided into two forms:rectangular evaporator and disk-shaped evaporator.The rectangular evaporator has advantages such as low heat leakage,a thin shell,and a large contact area compared to the disk-shaped evaporator.However,most of the research on rectangular evaporators focuses onworking fluids such as water,methanol,and acetone,when theseworking fluids are in operation,the internal pressure of the evaporator is less than atmospheric pressure.Ammonia,propylene,and other working fluids can also be utilized in the loop heat pipe,these working fluids demonstrate better performance when operating within other temperature intervals,for example,the operating temperature range of ammonia is−20℃to 50℃,however,in an atmospheric pressure environment,it is very difficult for the shell of the rectangular evaporator to withstand the saturated vapor pressure of the working fluid.This paper designs a rectangular flat plate loop heat pipe that can use ammonia as the working fluid.The internal reinforcing structure is used to improve the pressure strength of the shell.The secondary wick connects the compensation chamber and the capillary wick hydraulically.The experiment indicates that this kind of rectangular evaporator is unaffected by the position,and the secondary wick can effectively supply liquid under different angles.The thermal resistance of the evaporator wall was analyzed,and it was found that the thermal resistance of the evaporator wall was the main component of the thermal resistance of the system.The heat transfer capacities of 460 W@0.5 m and 200W@10 m were tested.The test results indicate that by setting a reinforcing structure inside the flat plate evaporator,the evaporator can withstand internal pressure.Combined with the design of the secondary wick,the flat plate evaporator can use working fluids with different pressures,expanding the range of available working fluids.展开更多
基金supported by the Ministry of Science and Technology(Grant No.2022YFA1403901)the National Natural Science Foundation of China(Grant Nos.12494594,11888101,12174428,and 12504192)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)the New Cornerstone Investigator Program,the Chinese Academy of Sciences through the Youth Innovation Promotion Association(Grant No.2022YSBR-048)the Shanghai Science and Technology Innovation Action Plan(Grant No.24LZ1400800).
文摘Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.
文摘With the most advanced and sophisticated technologies and equipment,NYBELT is one of the largest manufacturers of flat transmission belts in the world.Under the Certified Quality,Environment,Occupational Health&Safety,and Energy Standardized ISO Management System,NYBELT can produce all kinds of flat transmission belts,roller coverings and conveyor belts applicable to textile,printing&packaging,electronics and other industries.Due to the superior quality and the reasonable prices,we have become well known in providing high quality belting products and excellent service to customers all over the world.Our success in the past gives us the confidence to look into the future with great expectations.
文摘In a peach orchard in Lyuxiang Town,Jinshan District,Shanghai,youth delegates from 13 countries,officials from the Food and Agriculture Organization of the United Nations(FAO),and agricultural heritage experts were impressed by sweet and juicy Jinshan flat peaches.Jinshan has a history of flat peach cultivation that spans hundreds of years dating back to the Yuan Dynasty(1271-1368).
基金supported by the National Natural Science Foundation of China(Grant Nos.12125404,T2495231,123B2049,and 12204138)the National Key R&D Program of China(Grant No.2022YFA1403201)+7 种基金the Advanced MaterialsNational Science and Technology Major Project (Grant No.2024ZD0607000)the Basic Research Program of Jiangsu (Grant Nos.BK20233001 and BK20241253)the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant Nos.2024ZB002,2024ZB075,2025ZB440 and2025ZB852)the China Postdoctoral Science Foundation (Grant No.2025M773331)the Postdoctoral Fellowship Program of CPSF (Grant No.GZC20240695 and GZC20252202)the AI&AI for Science Program of Nanjing UniversityArtificial Intelligence and Quantum physics (AIQ) program of Nanjing Universitythe Fundamental Research Funds for the Central Universities。
文摘The Lieb lattice, characterized by its distinctive Dirac cone and flat-band electronic structures, hosts a variety of exotic physical phenomena. However, its realization remains largely confined to artificial lattices. In this work, we propose the concept of a Lieb electride, where the non-bound electrons gather at the middle edges,behaving as the quasi-atoms of a Lieb lattice, enabling the emergence of flat bands. Using crystal structure prediction method MAGUS and first-principles calculations, we predict a stable candidate, Ca_(2)I, at ambient pressure. Distinct from conventional electrides with localized electrons at cavity centers, Ca_(2)I features interstitial electrons situated at cavity edges. The resultant flat bands lie close to the Fermi level, giving rise to a pronounced peak in the density of states and leading to Stoner-type ferromagnetism. With increasing pressures, we observe quantum phase transitions from ferromagnetic to non-magnetic and finally to antiferromagnetic orders in Ca_(2)I.Intriguingly, superconductivity emerges in the antiferromagnetic region, suggesting potential competition between these correlated states. Our study not only extends the concepts of electrides but also provides a novel strategy for realizing Lieb lattices through non-bound electrons. This work establishes Ca_(2)I as a promising platform for exploring flat-band physics and correlated electronic states, opening avenues for novel quantum phenomena in electride-based materials.
基金the financial support from the National Natural Science Foundation of China(No.22209191)Ningbo Key R&D Project(No.2023Z155).
文摘The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material.
文摘This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Diverse volume fractions(1%, 2%, and 3%) of Al_(2)O_(3)-water nanofluids are meticulously prepared and analyzed. The essential physical properties of these nanofluids, critical for evaluating their thermal and flow characteristics, have been comprehensively assessed. From a quantitative perspective, numerical simulations are employed to predict the Nusselt number(Nu) and friction factor(f). The empirical findings reveal intriguing trends: the friction factor experiences an upward trend with diminishing velocity, attributed to heightened molecular cohesion. Conversely, the friction factor demonstrates a decline with diminishing volume fractions, a consequence of reduced particle size. Both the nanofluid's viscosity and heat transfer coefficient exhibit a rise in tandem with augmented volume flow rate and concentration gradient. Notably, the simulation results harmonize remarkably well with experimental data. Rigorous validation against prior studies underscores the robust consistency of these outcomes. In the pursuit of augmenting heat transfer, a volume fraction of 3% emerges as particularly influential, yielding an impressive 53.8% enhancement. Minor increments in the friction factor, while present, prove negligible and can be safely overlooked.
文摘The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,traditional coolants are starting to fall short.Nanofluids,which involve tiny nanoparticles dispersed into standardcooling liquids,offer a new solution by significantly improving heat transfer capabilities.The article categorizesthe different types of nanofluids(ranging from those based on metals and metal oxides to carbon materials andhybrid combinations)and examines their effects on the improvement of radiator performance.General consensusexists in the literature that nanofluids can support better heat dissipation and enable accordingly the developmentof smaller and lighter radiators,which require less coolant and allow more compact vehicle designs.However,thisreview demonstrates that the use of nanofluids does not come without challenges.These include the long-termstability of these fluids and material compatibility issues.A critical discussion is therefore elaborated about thegaps to be filled and the steps to be undertaken to promote and standardize the use of these fluids in the industry.
基金Project supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515130007)the National Natural Science Foundation of China (Grant Nos. U21A20432 and 52273077)+1 种基金the National Key Research and Development Program of China (Grant No. 2022YFA1403800)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000)。
文摘Flat electronic bands in condensed matter provide a rich avenue for exploring novel quantum phenomena. Here, we report an optical spectroscopy study of a topological hourglass semimetal Nb_(3)SiTe_(6) with the electric field of the incident light parallel to its crystalline ab-plane. The ab-plane optical conductivity spectra of Nb_(3)SiTe_(6) single crystals exhibit a remarkable peak-like feature around 1.20 eV, which is mainly contributed by the direct optical transitions between the two ab-initio-calculation-derived flat bands along the momentum direction Z–U. Our results pave the way for investigating exotic quantum phenomena based on the flat bands in topological hourglass semimetals.
基金supported by the National Natural Science Foundation of China(Grant No.62375140)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘We propose a method to measure the flatness of an object with a petal-like pattern generated by the interference of the measured orbital angular momentum(OAM)beam and the reference OAM beam which carries the opposite OAM state.By calculating the difference between the petal rotation angle without/with the object,the thickness information of the object,and then the flatness information,can be evaluated.Furthermore,the direction of the object’s flatness can be determined by the petal’s clockwise/counterclockwise rotation.We theoretically analyze the relationship between the object’s thickness and petal rotation angle,and verify the proposed method by experiment.The experimental results show that the proposed method is a high precision flatness measurement and can obtain the convex/concave property of the flatness.For the 1.02 mm glass sample,the mean deviation of the flatness is 1.357×10^(-8) and the variance is 0.242×10^(-16).For the 0.50 mm glass sample,the mean deviation of the flatness is 1.931×10^(-8) and the variance is 2.405×10^(-16).Two different topological charges are adopted for the 2.00 mm glass sample,and their flatness deviations are 0.239×10^(-8)(ℓ=1)and 0.246×10^(-8)(ℓ=2),where their variances are 0.799×10^(-18)(ℓ=1)and 0.775×10^(-18)(ℓ=2),respectively.It is shown that the flatness measured by the proposed method is the same for the same sample when different topological charges are used.All results indicate that the proposed method may provide a high flatness measurement,and will be a promising way to measure the flatness.
基金supported by National Key R&D Program of China(No.2024YFB4007100).
文摘With the increasing demand for higher-quality flatness in downstream industries,the optimization of rolling processes and parameters has become a critical area of research.The effects of rolling force and front tension adjustments on flatness were examined systematically under various rolling process conditions.By embedding the Johnson-Cook constitutive model into the ABAQUS simulation platform through a user-defined subroutine,a series of three-dimensional finite element models for different rolling scenarios were developed.Simulation results indicate that,under all four rolling process conditions,edge strain consistently exceeds center strain,with forward-driven rolling exhibiting greater edge strain than reverse-driven rolling.Along the strip thickness direction,reverse-driven rolling results in higher strain compared to forward-driven rolling.Moreover,in single roll driven rolling,the upper surface of the strip experiences higher strain than the lower surface,while the reverse trend is observed in double roll driven rolling.As the rolling force increases from 1000 to 5000 kN,the strain difference in the width and thickness directions of the strip varies significantly under double roll driven rolling and double roll reverse-driven rolling,with change slopes of 5.74×10^(-6) and-2.85×10^(-6),respectively.Double roll driven rolling effectively prevents the deterioration of flatness along the rolling direction.Furthermore,as the front tension increases from 60 to 100 MPa,double roll reverse-driven rolling significantly suppresses strain differentials in the width,thickness,and rolling directions,with change slopes of-6.73×10^(-4),1.22×10^(-5),and-1.29×10^(-5),respectively.Eventually,a predictive model is established,integrating rolling process,rolling force,and front tension,thereby providing a theoretical framework for advancing the precision and efficiency of strip rolling processes.
基金Supported by the National Natural Science Foundation of China(12101542,12371189,12371241).
文摘In this paper,we will discuss the almost global existence result for d-dimensional fractional nonlinear Schrodinger equation on flat torus,which is based on BNF technique,the tame property and the analysis of the spectrum of(-Δ)^(s).
基金Project supported by the National Natural Science Foundation of China(Grant No.12474440).
文摘This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating transducer in a ring excitation manner.The factors affecting the generation of Bessel-like collimated beams are investigated by theoretical analysis,numerical simulation and experimental methods.The results indicate that Bessel-like wave can be generated by a thin circular plate with fixed boundaries.The third-order mode of the circular plate can be modified to generate a collimated beam with suppressing side lobes when it is excited in a ring excitation manner and the excitation position lies between the first two nodal circles of the plate.As the excitation radius increases,the main lobe width of the resulting Bessel-like collimated beam decreases,the extent of the focusing region increases,and the amplitude of the side lobes initially increases and then decreases.Based on the simulation results,a prototype Bessel-like collimated beam generation system is made and measured experimentally.The experimental results are in good agreement with the numerical results.The Bessel-like collimated beam can be generated by the proposed system,which has potential application in the fields of long-range detection,imaging of highly attenuated materials,and airflow acceleration.
基金supported by the National Natural Science Foundation of China(52278532)Sichuan Science and Technology Program(2024NSFSC0153)。
文摘Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety,particularly in cold and humid environments.This study conducts numerical simulations of ice formation on thin flat plates using CFD and FENSAP-ICE,exploring how air temperature,wind velocity,and angle of attack(AOA)affect icing behavior and aerodynamic characteristics.Results indicate that ice thickness increases linearly over time.Rime ice forms at low temperatures due to immediate droplet freezing,whereas glaze ice develops at higher temperatures when a water film forms and subsequently refreezes into protruding ice horns;under identical conditions,rime ice consistently produces thicker ice layers than glaze ice.Increasing wind speed substantially enhances ice growth and coverage,while speeds as low as 1 m/s result in minimal accretion.Changes in AOA shift the icing region toward the pressure side,and AOAs of equal magnitude but opposite sign yield symmetrical ice accretion patterns and identical maximum thickness values.After icing,the plate’s leading edge becomes smoother,slightly reducing drag while increasing lift and moment coefficients.These findings highlight the dominant roles of temperature,wind speed,and AOA in determining ice morphology,extent,and aerodynamic impact,providing valuable insights for predicting icing effects and developing mitigation strategies for structures operating in icing-prone regions.
文摘Objective:To explore and analyze the clinical efficacy of flat mesh tension-free hernioplasty in the treatment of patients with inguinal hernia.Methods:A total of 60 patients with inguinal hernia were included and equally divided into an observation group(30 cases,flat mesh tension-free hernioplasty)and a control group(30 cases,mesh plug tension-free hernioplasty)based on differences in surgical plans.The visual analog scale(VAS)for postoperative pain,inflammatory markers(C-reactive protein,white blood cell count),and complication rates were compared between the two groups.Results:At 24 and 48 hours postoperatively,the VAS scores in the observation group were significantly lower than those in the control group(P<0.05).At 24 hours postoperatively,the levels of CRP and WBC were also lower in the observation group(P<0.05).The complication rate was slightly lower in the observation group(P>0.05).Conclusion:Flat mesh tension-free hernioplasty for inguinal hernia can alleviate postoperative pain and suppress inflammatory responses,with fewer complications,making it suitable for promotion at primary healthcare facilities.
基金supported by the National Natural Science Foundation of China(Grant No.12272345).
文摘This study presents a simplified numerical approach for evaluating the thermal performance of louvered fin and flat tube heat exchangers(LFFTHXs),which are critical in many thermal management applications but difficult to model due to their complex geometries.The proposed method uses an equivalent convective heat transfer coefficient to represent the fins,significantly reducing the computational requirements of the simulations.Validation against the effectiveness-number of transfer units method showed average deviations of 4.4%for the novel louvered fin with two combined holes and 9.5%for conventional configurations,confirming the accuracy of the method.Further application to two-phase refrigerant scenarios using experimental data demonstrated the robustness of the method and its suitability for practical design and optimization of LFFTHXs.The approach not only improves the feasibility of thermal analysis in industrial applications but also provides a foundation for future research into more efficient heat exchanger designs.
基金the financial support of the European Union under the REFRESH-Research Excellence for Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition and has been done in connection with project Students Grant Competition SP2025/062"specific research on progressive and sustainable production technologies"and SP2025/063"specific research on innovative and progressive manufacturing technologies"financed by the Ministry of Education,Youth and Sports and Faculty of Mechanical Engineering VSB-TUOThe authors would like to extend their sincere appreciation to Researchers Supporting Project number(RSP2025R472)King Saud University,Riyadh,Saudi Arabia.
文摘In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the complexity of transportation costs and demand,this study presents a novel method that offers flexible routing alternatives to manage these complexities.When real-world variables such as fluctuating costs,variable capacity,and unpredictable demand are considered,traditional transshipment models often prove inadequate.To overcome these challenges,we propose an innovative fully fuzzy-based framework using LR flat fuzzy numbers.This framework allows for more adaptable and flexible decision-making in multi-objective transshipment situations by effectively capturing uncertain parameters.To overcome these challenges,we develop an innovative,fully fuzzy-based framework using LR flat fuzzy numbers to effectively capture uncertainty in key parameters,offering more flexible and adaptive decision-making in multi-objective transshipment problems.The proposed model also presents alternative route options,giving decisionmakers a range of choices to satisfy multiple requirements,including reducing costs,improving service quality,and expediting delivery.Through extensive numerical experiments,we demonstrate that the model can achieve greater adaptability,efficiency,and flexibility than standard approaches.This multi-path structure provides additional flexibility to adapt to dynamic network conditions.Using ranking strategies,we compared our multi-objective transshipment model with existing methods.The results indicate that,while traditional methods such as goal and fuzzy programming generate results close to the anti-ideal value,thus reducing their efficiency,our model produces solutions close to the ideal value,thereby facilitating better decision making.By combining dynamic routing alternatives with a fully fuzzybased approach,this study offers an effective tool to improve decision-making and optimize complex networks under real-world conditions in practical settings.In this paper,we utilize LINGO 18 software to solve the provided numerical example,demonstrating the effectiveness of the proposed method.
文摘This study shows a technical,bioclimatic,and sustainable analysis of the first demountable house built entirely from glass components,Vitrohouse.The technical analysis details the construction challenges overcome to create a demountable house using only flat glass for all components(foundations,slabs,supporting structure,beams,roof,envelope,furnishings,kitchen fixtures,appliances).Secondly,we analyze the thermal and bioclimatic behavior of this demountable all-glass house to evaluate its energy efficiency.We also assess the contribution of Vitrohouse’s bioclimatic design to its sustainability level,using 11 of the most internationally recognized GBRSs(Green Building Rating Systems),demonstrating that it achieves a higher degree of sustainability than a conventional,non-bioclimatic home of the same size.Thirdly,we analyze the contribution of Vitrohouse’s demountable nature,showing that it has a higher level of sustainability than a conventionally built house.Finally,the sustainable analysis of its demountability is quantified using 11 GBRSs.The results show that it is perfectly feasible to construct buildings solely from flat glass,achieving high energy efficiency and sustainability.Furthermore,the glass components can be easily disassembled and reused,or recycled to manufacture new components with minimal energy consumption.
文摘The flattening of the internal governance of colleges and universities needs to follow the principles of democratic participation,equivalence of rights and responsibilities,and efficiency priority.The structural design should be comprehensively optimized and adjusted.The power distribution should follow the principle of coordination and balance between academic power and administrative power.The operation mechanism should focus on the scientificity and democracy of decision-making.The construction of supporting systems requires the improvement of the performance appraisal system as well as the incentive and supervision mechanisms.
基金supported by the start-up funding of CQNU (Grant No. 24XLB010)supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202100514)+3 种基金funding from Chongqing Natural Science Foundation under Grant No. CSTB2022NSCQ-JQX0018the Fundamental Research Funds for the Central Universities Grant No. 2021CDJZYJH-003Xiaomi Foundation/Xiaomi Young Talents Programfunding from the National Science Foundation of China under Grant Nos. 12404169, 12147172, 12274046, 11874094, 12147102, and 12347101。
文摘The quantum phase transition between Z_(2) plaquette valence bound solid(PVBS) and superfluid(SF) phases on the planar pyrochlore lattice(square ice) is under debate. To gain further insight, here, we focus on the dynamical features of the hard-core Bose–Hubbard model on this lattice and study the excitation spectra by combining stochastic analytic continuation and quantum Monte Carlo simulation. In both PVBS and SF phases,a flat band with bow-tie structure is observed and can be explained by certain symmetries. At the transition point,the spectra turn to be continuous and gapless. A(2+1)-dimensional Abelian–Higgs model with mixed 't Hooft anomaly is proposed to describe the transition, where the anomaly matching predicts that the deconfinement can exist on the domain walls. From the snapshot of the spin configuration in real space, we found the existence of the domain wall. We also found that the spectrum along a specific path in momentum space from PVBS phase to the transition point can be well described by an XXZ spin chain, and the critical theory of XXZ spin chain matches the anomaly. The two-spinon continuum along this specific path implies additional domain walls(point defect) can emerge in the domain walls(line defect) and take the role of deconfinement at the transition point.
基金Science Foundation for Distinguished Young Scholars 2020-JCJQ-ZQ-042.
文摘The loop heat pipe with a flat evaporator is mainly divided into two forms:rectangular evaporator and disk-shaped evaporator.The rectangular evaporator has advantages such as low heat leakage,a thin shell,and a large contact area compared to the disk-shaped evaporator.However,most of the research on rectangular evaporators focuses onworking fluids such as water,methanol,and acetone,when theseworking fluids are in operation,the internal pressure of the evaporator is less than atmospheric pressure.Ammonia,propylene,and other working fluids can also be utilized in the loop heat pipe,these working fluids demonstrate better performance when operating within other temperature intervals,for example,the operating temperature range of ammonia is−20℃to 50℃,however,in an atmospheric pressure environment,it is very difficult for the shell of the rectangular evaporator to withstand the saturated vapor pressure of the working fluid.This paper designs a rectangular flat plate loop heat pipe that can use ammonia as the working fluid.The internal reinforcing structure is used to improve the pressure strength of the shell.The secondary wick connects the compensation chamber and the capillary wick hydraulically.The experiment indicates that this kind of rectangular evaporator is unaffected by the position,and the secondary wick can effectively supply liquid under different angles.The thermal resistance of the evaporator wall was analyzed,and it was found that the thermal resistance of the evaporator wall was the main component of the thermal resistance of the system.The heat transfer capacities of 460 W@0.5 m and 200W@10 m were tested.The test results indicate that by setting a reinforcing structure inside the flat plate evaporator,the evaporator can withstand internal pressure.Combined with the design of the secondary wick,the flat plate evaporator can use working fluids with different pressures,expanding the range of available working fluids.