期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
对地球系统模式FIO-ESM同化实验中北极海冰模拟的评估 被引量:6
1
作者 舒启 乔方利 +1 位作者 鲍颖 尹训强 《海洋学报》 CAS CSCD 北大核心 2015年第11期33-40,共8页
本文评估了地球系统模式FIO-ESM(First Institute of Oceanography-Earth System Model)基于集合调整Kalman滤波同化实验对1992-2013年北极海冰的模拟能力。结果显示:尽管同化资料只包括了全球海表温度和全球海面高度异常两类数据,而并... 本文评估了地球系统模式FIO-ESM(First Institute of Oceanography-Earth System Model)基于集合调整Kalman滤波同化实验对1992-2013年北极海冰的模拟能力。结果显示:尽管同化资料只包括了全球海表温度和全球海面高度异常两类数据,而并没有对海冰进行同化,但实验结果能很好地模拟出与观测相符的北极海冰基本态和长期变化趋势,卫星观测和FIO-ESM同化实验所得的北极海冰覆盖范围在1992-2013年间的线性变化趋势分别为-7.06×105和-6.44×105 km2/(10a),同化所得的逐月海冰覆盖范围异常和卫星观测之间的相关系数为0.78。与FIO-ESM参加CMIP5(Coupled Model Intercomparison Project Phase 5)实验结果相比,该同化结果所模拟的北极海冰覆盖范围的长期变化趋势和海冰密集度的空间变化趋势均与卫星观测更加吻合,这说明该同化可为利用FIO-ESM开展北极短期气候预测提供较好的预测初始场。 展开更多
关键词 数据同化 fio-esm 气候变化 北极海冰
在线阅读 下载PDF
地球系统模式FIO-ESM对2016—2017年La Nia事件及其对中国近海地区影响的预测 被引量:1
2
作者 廖华夏 鲍颖 +2 位作者 宋振亚 舒启 尹训强 《海岸工程》 2017年第1期12-21,共10页
最近的观测表明赤道太平洋中部及东部的水温略低于拉尼娜事件的阈值,但大气与海洋的状态还不足以完全支持转为弱拉尼娜现象。本研究基于地球系统模式FIO-ESM和集合调整卡尔曼滤波同化方案建立的短期气候同化和预测系统,进行了1992-01-01... 最近的观测表明赤道太平洋中部及东部的水温略低于拉尼娜事件的阈值,但大气与海洋的状态还不足以完全支持转为弱拉尼娜现象。本研究基于地球系统模式FIO-ESM和集合调整卡尔曼滤波同化方案建立的短期气候同化和预测系统,进行了1992-01-01—2016-10-31的模式同化,结果表明同化系统能够为预测提供较好的初始场。随后对2016—2017年拉尼娜事件的状态以及中国近海地区气温和降水异常进行了未来6个月的预测,结果表明赤道太平洋会在2016年年底继续降温,Nio3.4区海温异常将持续略低于拉尼娜事件的阈值-0.5℃,说明2016—2017年为弱拉尼娜事件,2017年春季东太平洋继续降温,表明此次拉尼娜事件可能会持续较长时间。预测结果同时也表明2016年冬季至2017年春季中国近海地区存在着北高南低的气温异常分布,中国南部地区降水存在负异常。拉尼娜带来的极端天气与气候异常会对中国沿岸地区带来巨大影响,但总体来说2016—2017年拉尼娜事件对中国的影响相对较弱。 展开更多
关键词 拉尼娜 短期气候预测 fio-esm 集合调整卡尔曼滤波同化方案 中国近海地区
在线阅读 下载PDF
FIO-ESM v2.0模式及其参与CMIP6的方案 被引量:14
3
作者 宋振亚 鲍颖 乔方利 《气候变化研究进展》 CSCD 北大核心 2019年第5期558-565,共8页
目前,世界气候研究计划(WCRP)组织的国际耦合模式比较计划(CMIP)已经进入到第六阶段(CMIP6),CMIP6试验的开展也已成为国内外地球系统模式工作组的首要工作之一。自然资源部第一海洋研究所地球系统模式FIO-ESM是以耦合自主开发的海浪模... 目前,世界气候研究计划(WCRP)组织的国际耦合模式比较计划(CMIP)已经进入到第六阶段(CMIP6),CMIP6试验的开展也已成为国内外地球系统模式工作组的首要工作之一。自然资源部第一海洋研究所地球系统模式FIO-ESM是以耦合自主开发的海浪模式为特色的地球系统模式。在参与CMIP5的FIO-ESM v1.0的基础上,通过升级分量模式、改进海气通量相关物理过程和提高分辨率等,FIO-ESM v2.0现已完成研发,正在开展CMIP6科学计划的相关试验。文中围绕FIO-ESM v2.0的特色和计划参与CMIP6的情况,介绍了FIO-ESM v2.0的模式框架、包含的特色物理过程以及拟参加的CMIP6科学计划情况,以方便气候研究领域的科学家了解和使用。 展开更多
关键词 fio-esm CMIP6 海浪 地球系统模式
在线阅读 下载PDF
The prediction on the 2015/16 El Nino event from the perspective of FIO-ESM 被引量:8
4
作者 SONG Zhenya SHU Qi +2 位作者 BAO Ying YIN Xunqiang QIAO Fangli 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第12期67-71,共5页
Recently atmospheric and oceanic observations indicate the tropical Pacific is at the El Ni?o condition. However,it's not clear whether this El Ni?o event of this year is comparable to the very strong one of 1997/9... Recently atmospheric and oceanic observations indicate the tropical Pacific is at the El Ni?o condition. However,it's not clear whether this El Ni?o event of this year is comparable to the very strong one of 1997/98 which brought huge influence on the whole world. In this study, based on the Ensemble Adjusted Kalman Filter(EAKF)assimilation scheme and First Institute of Oceanography-Earth System Model(FIO-ESM), the assimilation system is setup, which can provide reasonable initial conditions for prediction. And the hindcast results suggest the skill of El Ni?o-Southern Oscillation(ENSO) prediction is comparable to other dynamical coupled models. Then the prediction for 2015/16 El Ni?o by using FIO-ESM is started from 1 November 2015. The ensemble results indicate that the 2015/16 El Ni?o will continue to be strong. By the end of 2015, the strongest strength is very like more than 2.0°C and the ensemble mean strength is 2.34°C, which indicates 2015/16 El Ni?o event will be very strong but slightly less than that of 1997/98 El Ni?o event(2.40°C) calculated relative a climatology based on the years1992–2014. The prediction results also suggest 2015/16 El Ni?o event will be a transition to ENSO-neutral level in the early spring(FMA) 2016, and then may transfer to La Ni?a in summer 2016. 展开更多
关键词 El Ni?o PREDICTION fio-esm Ensemble Adjusted Kalman Filter assimilation
在线阅读 下载PDF
两代耦合海浪的地球系统模式FIO-ESM全球碳循环过程发展 被引量:3
5
作者 宋振亚 鲍颖 乔方利 《海洋科学进展》 CAS CSCD 北大核心 2022年第4期777-790,共14页
自然资源部第一海洋研究所地球系统模式FIO-ESM是自主研发的、以耦合海浪模式为特色的地球系统模式,包括物理气候模式和全球碳循环模式。该模式从第一代版本FIO-ESM v1.0发展到第二代版本FIO-ESM v2.0,其物理气候模式和全球碳循环模式... 自然资源部第一海洋研究所地球系统模式FIO-ESM是自主研发的、以耦合海浪模式为特色的地球系统模式,包括物理气候模式和全球碳循环模式。该模式从第一代版本FIO-ESM v1.0发展到第二代版本FIO-ESM v2.0,其物理气候模式和全球碳循环模式都取得了改进与提升。FIO-ESM v2.0全球碳循环模式的海洋碳循环模式由v1.0的营养盐驱动模型升级为NPZD(Nutrient-Phytoplankton-Zooplankton-Detritus)型的海洋生态动力学碳循环模型,陆地碳循环模型由v1.0的简单的光能利用率模型升级为考虑碳氮相互作用的碳氮(CN)耦合模型;大气碳循环模型仍为CO_(2)的传输过程,考虑了化石燃料排放、土地利用排放等人为CO_(2)排放量。在物理过程参数化方案方面,FIO-ESM v2.0全球碳循环过程在考虑浪致混合作用对生物地球化学参数的作用的基础上,增加了海表面温度的日变化过程对海-气CO_(2)通量的影响。已有数值模拟试验结果表明,FIO-ESM v2.0在考虑了更加复杂的碳循环过程后仍具有较好的全球碳循环模拟能力,为进一步开展海洋与全球碳循环研究提供了更有力的支撑工具,从而更好地服务于国家的双碳目标。 展开更多
关键词 fio-esm 全球碳循环 海洋碳循环模式 陆地碳循环模式
在线阅读 下载PDF
Arctic sea ice concentration and thickness data assimilation in the FIO-ESM climate forecast system 被引量:5
6
作者 Qi Shu Fangli Qiao +5 位作者 Jiping Liu Zhenya Song Zhiqiang Chen Jiechen Zhao Xunqiang Yin Yajuan Song 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期65-75,共11页
To improve the Arctic sea ice forecast skill of the First Institute of Oceanography-Earth System Model(FIO-ESM)climate forecast system,satellite-derived sea ice concentration and sea ice thickness from the Pan-Arctic ... To improve the Arctic sea ice forecast skill of the First Institute of Oceanography-Earth System Model(FIO-ESM)climate forecast system,satellite-derived sea ice concentration and sea ice thickness from the Pan-Arctic IceOcean Modeling and Assimilation System(PIOMAS)are assimilated into this system,using the method of localized error subspace transform ensemble Kalman filter(LESTKF).Five-year(2014–2018)Arctic sea ice assimilation experiments and a 2-month near-real-time forecast in August 2018 were conducted to study the roles of ice data assimilation.Assimilation experiment results show that ice concentration assimilation can help to get better modeled ice concentration and ice extent.All the biases of ice concentration,ice cover,ice volume,and ice thickness can be reduced dramatically through ice concentration and thickness assimilation.The near-real-time forecast results indicate that ice data assimilation can improve the forecast skill significantly in the FIO-ESM climate forecast system.The forecasted Arctic integrated ice edge error is reduced by around 1/3 by sea ice data assimilation.Compared with the six near-real-time Arctic sea ice forecast results from the subseasonal-toseasonal(S2 S)Prediction Project,FIO-ESM climate forecast system with LESTKF ice data assimilation has relatively high Arctic sea ice forecast skill in 2018 summer sea ice forecast.Since sea ice thickness in the PIOMAS is updated in time,it is a good choice for data assimilation to improve sea ice prediction skills in the near-realtime Arctic sea ice seasonal prediction. 展开更多
关键词 fio-esm sea ice data assimilation sea ice forecast
在线阅读 下载PDF
耦合海浪的地球系统模式FIO-ESM 被引量:4
7
作者 宋振亚 《气候变化研究快报》 2020年第1期26-39,共14页
地球系统模式是定量描述气候系统的数值模型,也是理解和预测气候变化、评估人类对气候变化影响的核心工具,其发展是全球变化领域的前沿。尽管当前地球系统模式取得了巨大的进步,但仍面临一些共性偏差问题。自然资源部第一海洋研究所通... 地球系统模式是定量描述气候系统的数值模型,也是理解和预测气候变化、评估人类对气候变化影响的核心工具,其发展是全球变化领域的前沿。尽管当前地球系统模式取得了巨大的进步,但仍面临一些共性偏差问题。自然资源部第一海洋研究所通过引入小尺度海浪在海洋混合和海气通量上的作用,率先发展了两代耦合海浪的地球系统模式FIO-ESM,能够有效减缓模拟偏差,提高模拟和预测能力。本文围绕耦合海浪分量模式这一特色,以FIO-ESM模式中引入的浪致混合、斯托克斯漂流对海气通量作用、海浪飞沫对热通量作用和海表温度日变化过程等4种特色物理过程为切入点,阐述了两代模式发展的考量,总结了FIO-ESM在气候变化研究和短期气候预测上的应用,系统回顾了两代模式的发展历程。最后,结合海浪在气候系统中的作用,对地球系统模式未来发展进行了展望,为模式的发展提供参考。 展开更多
关键词 地球系统模式 fio-esm 海浪 耦合模式 气候模式
在线阅读 下载PDF
地球系统模式FIO-ESM v2.0对北太平洋年代际气候变化的模拟评估 被引量:1
8
作者 韦销蔚 董昌明 +1 位作者 夏长水 乔方利 《海洋学报》 CAS CSCD 北大核心 2023年第9期25-44,共20页
数值模拟方法在研究长时间的气候变化上扮演着重要角色。一直以来,数值模式模拟年代际气候变化如太平洋年代际震荡(PDO)的位相转换存在巨大挑战。本文利用自然资源部第一海洋研究所研发的地球系统模式(First Institute of Oceanography-... 数值模拟方法在研究长时间的气候变化上扮演着重要角色。一直以来,数值模式模拟年代际气候变化如太平洋年代际震荡(PDO)的位相转换存在巨大挑战。本文利用自然资源部第一海洋研究所研发的地球系统模式(First Institute of Oceanography-Earth System Model Version 2,FIO-ESM v2.0)145年(1870–2014年)历史气候模拟试验结果,结合再分析资料和另外两个地球系统模式结果,分析评估了该模式对太平洋年代际振荡的模拟能力。研究发现,FIO-ESM v2.0能够再现历史时期PDO的空间模态分布特征,其PDO指数具有10~30年的周期变化特征,同时于1960年以后能刻画出与再分析数据结果相近的PDO位相转变特征。研究表明,FIO-ESM v2.0能够较为准确地模拟出PDO的位相转变特征。另外,本文还评估了该模式对大气环流模态的模拟能力及其与PDO之间的关系,以及该模式模拟PDO的可能机制。该模式的PDO与大气环流的阿留申低压模态相关。进一步的分析表明,平流作用和热通量是关键年代际海域海温异常振幅的主要因素,而罗斯贝波西传时间则可能是影响PDO位相转变的关键因素。 展开更多
关键词 fio-esm v2.0 太平洋年代际震荡 海气相互作用
在线阅读 下载PDF
FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project 被引量:1
9
作者 Qi Shu Zhenya Song +5 位作者 Ying Bao Xiaodan Yang Yajuan Song Xinfang Li Meng Wei Fangli Qiao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第10期22-31,共10页
We introduced the Coupled Model Intercomparison Project Phase 6(CMIP6)Ocean Model Intercomparison Project CORE2-forced(OMIP-1)experiment by using the First Institute of Oceanography Earth System Model version 2.0(FIO-... We introduced the Coupled Model Intercomparison Project Phase 6(CMIP6)Ocean Model Intercomparison Project CORE2-forced(OMIP-1)experiment by using the First Institute of Oceanography Earth System Model version 2.0(FIO-ESM v2.0),and comprehensively evaluated the simulation results.Unlike other OMIP models,FIO-ESM v2.0 includes a coupled ocean surface wave component model that takes into account non-breaking surface wave-induced vertical mixing in the ocean and effect of surface wave Stokes drift on air-sea momentum and heat fluxes in the climate system.A sub-layer sea surface temperature(SST)diurnal cycle parameterization was also employed to take into account effect of SST diurnal cycle on air-sea heat fluxes to improve simulations of air-sea interactions.Evaluations show that mean values and long-term trends of significant wave height were adequately reproduced in the FIO-ESM v2.0 OMIP-1 simulations,and there is a reasonable fit between the SST diurnal cycle obtained from in situ observations and that parameterized by FIO-ESM v2.0.Evaluations of model drift,temperature,salinity,mixed layer depth,and the Atlantic Meridional Overturning Circulation show that the model performs well in the FIO-ESM v2.0 OMIP-1 simulation.However,the summer sea ice extent of the Arctic and Antarctic is underestimated. 展开更多
关键词 fio-esm OMIP CMIP6 OGCM
在线阅读 下载PDF
Seasonal prediction skills of FIO-ESM for North Pacific sea surface temperature and precipitation
10
作者 Yiding Zhao Xunqiang Yin +1 位作者 Yajuan Song Fangli Qiao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第1期5-12,共8页
The seasonal prediction of sea surface temperature(SST) and precipitation in the North Pacific based on the hindcast results of The First Institute of Oceanography Earth System Model(FIO-ESM) is assessed in this study... The seasonal prediction of sea surface temperature(SST) and precipitation in the North Pacific based on the hindcast results of The First Institute of Oceanography Earth System Model(FIO-ESM) is assessed in this study.The Ensemble Adjusted Kalman Filter assimilation scheme is used to generate initial conditions, which are shown to be reliable by comparison with the observations. Based on this comparison, we analyze the FIO-ESM 6-month hindcast results starting from each month of 1993–2013. The model exhibits high SST prediction skills over most of the North Pacific for two seasons in advance. Furthermore, it remains skillful at long lead times for midlatitudes. The reliable prediction of SST can transfer fairly well to precipitation prediction via air-sea interactions.The average skill of the North Pacific variability(NPV) index from 1 to 6 months lead is as high as 0.72(0.55) when El Ni?o-Southern Oscillation and NPV are in phase(out of phase) at initial conditions. The prediction skill of the NPV index of FIO-ESM is improved by 11.6%(23.6%) over the Climate Forecast System, Version 2. For seasonal dependence, the skill of FIO-ESM is higher than the skill of persistence prediction in the later period of prediction. 展开更多
关键词 SEASONAL prediction NORTH PACIFIC sea surface temperature precipitation fio-esm climate model
在线阅读 下载PDF
基于地球系统模式FIO-ESM v2.0对1850~2014年大西洋经向翻转环流变化的研究
11
作者 曹茜 董昌明 夏长水 《海洋与湖沼》 CAS CSCD 北大核心 2022年第3期538-556,共19页
大西洋经向翻转环流(Atlantic meridional overturning circulation,AMOC)作为全球大洋的极向热量输送带,对大西洋附近区域的天气及全球气候变化都存在至关重要的影响。采用自然资源部第一海洋研究所研发的地球系统模式FIO-ESM v2.0(Fir... 大西洋经向翻转环流(Atlantic meridional overturning circulation,AMOC)作为全球大洋的极向热量输送带,对大西洋附近区域的天气及全球气候变化都存在至关重要的影响。采用自然资源部第一海洋研究所研发的地球系统模式FIO-ESM v2.0(First Institute of Oceanography-earth system model version 2.0)分析了1850~2014年AMOC的空间分布特征及时间变化规律,并进一步讨论造成该变化的可能因素。研究结果表明:1850~2014年AMOC最大值出现在40°N、1000 m深度附近,其时间序列总体呈现-0.0791×10^(6)m^(3)/(s·a)的减弱趋势,该期间伴随着Labrador、Irminger海域冬季混合层深度的变浅。通过将模式计算的AMOC强度与RAPID(rapid climate change programme)和OSNAP(overturning in the subpolar North Atlantic program)观测资料进行对比,结合模式间并行比较结果显示该模式能较好地再现观测数据期间的AMOC变化规律。FIO-ESM v2.0模式模拟的AMOC具有55 a左右的年代际周期,Labrador、Irminger海域冬季混合层深度变化揭示的对流变化以及Labrador、GIN海域表层海水密度变化造成的海水下沉对AMOC强度的周期性振荡贡献较明显,其周期性变化与海表盐度(sea surface salinity,SSS)、海表温度(sea surface temperature,SST)、蒸发与降水的差值、北大西洋涛动(North Atlantic oscillation,NAO)等要素的变化密切相关。 展开更多
关键词 大西洋经向翻转环流(Atlantic meridional overturning circulation AMOC) fio-esm v2.0模式 AMOC指数
在线阅读 下载PDF
FIO-ESM v2.0 Outputs for the CMIP6 Global Monsoons Model Intercomparison Project Experiments
12
作者 Yajuan SONG Xinfang LI +4 位作者 Ying BAO Zhenya SONG Meng WEI Qi SHU and Xiaodan YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第10期1045-1056,共12页
Three tiers of experiments in the Global Monsoons Model Intercomparison Project(GMMIP),one of the endorsed model intercomparison projects of phase 6 of the Coupled Model Intercomparison Project(CMIP6),are implemented ... Three tiers of experiments in the Global Monsoons Model Intercomparison Project(GMMIP),one of the endorsed model intercomparison projects of phase 6 of the Coupled Model Intercomparison Project(CMIP6),are implemented by the First Institute of Oceanography Earth System Model version 2(FIO-ESM v2.0),following the GMMIP protocols.Evaluation of global mean surface air temperature from 1870 to 2014 and climatological precipitation(1979–2014)in tier-1 shows that the atmosphere model of FIO-ESM v2.0 can reproduce the basic observed atmospheric features.In tier-2,the internal variability is captured by the coupled model,with the SST restoring to the model climatology plus the observed anomalies in the tropical Pacific and North Atlantic.Simulation of the Northern Hemisphere summer monsoon circulation is significantly improved by the SST restoration in the North Atlantic.In tier-3,five orographic perturbation experiments are conducted covering the period 1979–2014 by modifying the surface elevation or vertical heating in the prescribed region.In particular,the strength of the South Asian summer monsoon is reduced by removing the topography or thermal forcing above 500 m over the Asian continent.Monthly and daily simulated outputs of FIO-ESM v2.0 are provided through the Earth System Grid Federation(ESGF)node to contribute to a better understanding of the global monsoon system. 展开更多
关键词 CMIP6 GMMIP fio-esm v2.0 global monsoon
在线阅读 下载PDF
Arctic Ocean Dynamical Downscaling Data for Understanding Past and Future Climate Change
13
作者 Qi SHU Qiang WANG +6 位作者 Yan HE Zhenya SONG Gui GAO Hailong LIU Shizhu WANG Rongrong PAN Fangli QIAO 《Advances in Atmospheric Sciences》 2025年第9期1761-1775,共15页
The Arctic is one of Earth’s regions highly susceptible to climate change.However,in situ long-term observations used for climate research are relatively sparse in the Arctic Ocean,and current climate models exhibit ... The Arctic is one of Earth’s regions highly susceptible to climate change.However,in situ long-term observations used for climate research are relatively sparse in the Arctic Ocean,and current climate models exhibit notable biases in Arctic Ocean simulations.Here,we present an Arctic Ocean dynamical downscaling dataset,obtained from the global ocean-sea ice model FESOM2 with a regionally refined horizonal resolution of 4.5 km in the Arctic region,which is driven by bias-corrected surface forcings derived from a climate model.The dataset includes 115 years(1900-2014)of historical simulations and two 86-year future projection simulations(2015-2100)for the SSP2-4.5 and SSP5-8.5 scenarios.The historical simulations demonstrate substantially reduced biases in temperature,salinity and sea-ice thickness compared to CMIP6 climate models.Common biases in the representation of the Atlantic Water layer found in climate model simulations are also markedly reduced in the dataset.Serving as a crucial long-term data source for climate change assessments and scientific research for the Arctic Ocean,this dataset provides valuable information for the scientific community. 展开更多
关键词 Arctic Ocean climate change CMIP6 FESOM2 fio-esm
在线阅读 下载PDF
Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM 被引量:2
14
作者 Yutong ZHANG Haiming XU +1 位作者 Fangli QIAO Changming DONG 《Frontiers of Earth Science》 SCIE CAS CSCD 2018年第1期24-36,共13页
The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIO- ESM). The seasonal variation of the global MLD from the FIO-E... The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIO- ESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simula- tion accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins. 展开更多
关键词 mixed layer depth fio-esm model SEASONALVARIATION
原文传递
基于机器学习订正模型的未来百年全球海表温度预估研究 被引量:3
15
作者 匡志远 宋振亚 董昌明 《气候变化研究快报》 2020年第4期270-284,共15页
经过半个多世纪的发展,气候模式已成为理解气候变化机理和预测预估未来气候不可或缺的工具,然而由于其对气候变化的模拟能力仍存在一定的不足,这影响了气候预测预估的精准性。基于机器学习的订正模型在天气预报和气候预测预估等方面的... 经过半个多世纪的发展,气候模式已成为理解气候变化机理和预测预估未来气候不可或缺的工具,然而由于其对气候变化的模拟能力仍存在一定的不足,这影响了气候预测预估的精准性。基于机器学习的订正模型在天气预报和气候预测预估等方面的探索性研究中表现出了较好的应用潜力。本文基于集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)和BP (Back Propagation)神经网络发展了气候模式全球月平均海表温度(Sea Surface Temperature, SST)的订正模型,基于历史观测数据和气候模式FIO-ESM v2.0参与第六次国际耦合模式比较计划(Coupled Model Intercom-parison Project 6, CMIP6)的历史试验结果确定了模型参数,进而对该模式三种排放情景(SSP1-2.6、SSP2-4.5和SSP5-8.5)的未来百年全球月平均SST开展了预估订正。结果表明:采用本文建立的机器学习订正模型,能够有效降低历史试验的模拟偏差,均方根误差由0.401℃降至0.096℃,平均绝对偏差由0.338℃降至0.077℃,相关系数由0.33提升到了0.95。经过订正后,未来三种排放情景下的全球平均SST增温趋势分别为0.424℃/100a、1.325℃/100a和3.185℃/100a,本世纪末20年(2081~2100)年平均的全球平均SST较最近20年(1995~2014)将分别升温0.608℃、1.183℃和2.409℃。 展开更多
关键词 机器学习 订正模型 海表面温度 fio-esm v2.0 未来预估
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部