We prove that there are only finitely many diffeomorphism types of curvature-adapted equifocal hypersurfaces in a simply connected compact symmetric space.Moreover,if the symmetric space is of rank one,the result can ...We prove that there are only finitely many diffeomorphism types of curvature-adapted equifocal hypersurfaces in a simply connected compact symmetric space.Moreover,if the symmetric space is of rank one,the result can be strengthened by dropping the condition curvature-adapted.展开更多
By constructing certain maps, this note completes the answer of the question: For which closed orientable 3-manifold N, is the set of mapping degrees D(M, N) finite for any closed orientable 3-manifold M?
Let A be a completely decomposable homogeneous torsion-free abelian group of rank n(n≥2).Let m(n)=A×(a)be the split extension of A by an automorphismαwhich is a cyclic permutation of the direct components twist...Let A be a completely decomposable homogeneous torsion-free abelian group of rank n(n≥2).Let m(n)=A×(a)be the split extension of A by an automorphismαwhich is a cyclic permutation of the direct components twisted by a rational integer m.Then Om(n)is an infinite soluble group.In this paper,the residual finiteness of Om(n)is investigated.展开更多
Let R be a commutative Noetherian ring, α an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. In this paper, it is shown that dim Supp Hi a(M) ≤ 1 for all i 〈 t if and on...Let R be a commutative Noetherian ring, α an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. In this paper, it is shown that dim Supp Hi a(M) ≤ 1 for all i 〈 t if and only if there exists an ideal b of R such that dimR/b ≤ 1 and Hia(M) ≌ Hi b(M) for all i 〈 t. Moreover, we prove that dimSuppHia(M) 〈≤dim M - i for all i.展开更多
Theπ2-diffeomorphism finiteness result of F.Fang-X.Rong and A.Petrunin-W.Tuschmann(independently)asserts that the diffeomorphic types of compact n-manifolds M with vanishing first and second homotopy groups can be bo...Theπ2-diffeomorphism finiteness result of F.Fang-X.Rong and A.Petrunin-W.Tuschmann(independently)asserts that the diffeomorphic types of compact n-manifolds M with vanishing first and second homotopy groups can be bounded above in terms of n,and upper bounds on the absolute value of sectional curvature and diameter of M.In this paper,we will generalize thisπ2-diffeomorphism finiteness by removing the condition thatπ1(M)-0 and asserting the diffeomorphism finiteness on the Riemannian universal cover of M.展开更多
Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, m). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t≥ 0 is an inte...Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, m). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t≥ 0 is an integer and p C Supp H^t_p (M), then Hm^t+dim R/p (M) is not p-cofinite. Then we obtain a partial answer to a question raised by Huneke. Namely, if R is a complete local ring, then H^n_m (M) is finitely generated if and only if 0 ≤ n ¢ W, where W ---- {t + dimR/p丨p ∈ SuppH^t_p(M)/V(m)}. Also, we show that if J C I are 1-dimensional ideals of R, then H^t_I(M) is J-cominimax, and H^t_I(M) is finitely generated (resp., minimax) if and only if H}R, (Mp) is finitely generated for all p C Spec R (resp., p ∈ SpecR/MaxR). Moreover, the concept of the J-cofiniteness dimension cJ(M) of M relative to I is introduced, and we explore an interrelation between c^I_m(M) and the filter depth of M in I. Finally, we show that if R is complete and dim M/IM ≠ 0, then c^I_m (R) ---- inf{depth Mp + dim R/p 丨 P ∈ Supp M/IM/V(m)}.展开更多
Necessary and sufficient conditions are given for the finiteness of the generalized exponents expD(k), f(D, k) and F(D, k) for digraphs which are not necessarily primitive. Also the largest finite value of the general...Necessary and sufficient conditions are given for the finiteness of the generalized exponents expD(k), f(D, k) and F(D, k) for digraphs which are not necessarily primitive. Also the largest finite value of the generalized exponent expD(k) for digraphs of order n is determined and the complete characterizations of the extreme digraphs are given.展开更多
We prove that certain 1-relator groups have Property E. Using this fact, we characterize all conjugacy separable 1-relator groups of the form a,b;(a-αbβaαbγ)t , t 1, having residually finite outer automorphism gro...We prove that certain 1-relator groups have Property E. Using this fact, we characterize all conjugacy separable 1-relator groups of the form a,b;(a-αbβaαbγ)t , t 1, having residually finite outer automorphism groups.展开更多
Some singular characteristics of analytic functions with positive definiteness are considered. To avoid these singular cases, the finite truncate condition is proposed. When the finite truncate condition is satisfied,...Some singular characteristics of analytic functions with positive definiteness are considered. To avoid these singular cases, the finite truncate condition is proposed. When the finite truncate condition is satisfied, the positive definiteness of an analytic function can be judged by the partial sum of its Taylor series, i e , by a polynomial. This discussion will be useful in the construction of Lyapunov functions for nonlinear systems.展开更多
An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of t...An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.展开更多
In engineering,the demand for high energy absorption by structures subjected to impact loads is increasing.Balancing the limited space,manufacturing feasibility,and energy absorption capabilities is a key point in the...In engineering,the demand for high energy absorption by structures subjected to impact loads is increasing.Balancing the limited space,manufacturing feasibility,and energy absorption capabilities is a key point in the design of many enclosed structures with energy absorption requirements.To achieve a lightweight design and controllable energy absorption by the structures,within a limited space,this study proposes a bio-inspired double-layer impact-resistant structure that can be manufactured by an additive manufacturing method(powder bed fusion),inspired by the microstructure of a woodpecker’s head.The structure is composed of two basic structural units:a quasi-circular ring and an oblique cylinder.The controllable energy absorption capabilities of the structure were studied through a combination of theoretical analyses,numerical simulations,and physical experiments.The results showed that,for the quasi-circular ring structure,the specific energy absorption range of 13-72 J/g could be effectively regulated by adjusting the structural parameters.The specific energy absorption range of 11-137 J/g could be effectively regulated for oblique cylindrical structures.Finally,the structure was applied to the design of engineering impact-resistant devices,proving the effectiveness of the controllable energy absorption of the structure.Moreover,the design process of the structure was optimized,laying a foundation for the structure to better serve engineering design applications.展开更多
Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability an...Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.展开更多
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres...The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project.展开更多
Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for thes...Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for these complex cases.This article explores the integration of finite element analysis(FEA)to enhance surgical precision and outcomes.FEA provides detailed biomechanical insights,aiding in preoperative planning,implant design,and surgical technique optimization.By simulating implant configurations and assessing bone quality,FEA helps in customizing implants and evaluating surgical techniques like subtrochanteric shortening osteotomy.Advanced imaging techniques,such as 3D printing,virtual reality,and augmented reality,further enhance total hip arthroplasty precision.Future research should focus on validating FEA models,developing patient-specific simulations,and promoting multidisciplinary collaboration.Integrating FEA and advanced technologies in total hip arthroplasty can improve functional outcomes,reduce complications,and enhance quality of life for patients with childhood hip disorder sequelae.展开更多
Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the...Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.展开更多
Temporal interference(TI)is a form of stimulation that epitomizes an innovative and non-invasive approach for profound neuromodulation of the brain,a technique that has been validated in mice.Yet,the thin cranial bone...Temporal interference(TI)is a form of stimulation that epitomizes an innovative and non-invasive approach for profound neuromodulation of the brain,a technique that has been validated in mice.Yet,the thin cranial bone structure of mice has a marginal influence on the effect of the TI technique and may not effectively showcase its effectiveness in larger animals.Based on this,we carried out TI stimulation experiments on rats.Following the TI intervention,analysis of electrophysiological data and immunofluorescence staining indicated the generation of a stimulation focus within the nucleus accumbens(depth,8.5 mm)in rats.Our findings affirm the viability of the TI methodology in the presence of thick cranial bones,furnishing efficacious parameters for profound stimulation with TI administered under such conditions.This experiment not only sheds light on the intervention effects of TI deep in the brain but also furnishes robust evidence in support of its prospective clinical utility.展开更多
This study presents a comprehensive investigation of residual strength in corroded pipelines within the Yichang-Qianjiang section of the Sichuan-East Gas Pipeline,integrating advanced numerical simulation with experim...This study presents a comprehensive investigation of residual strength in corroded pipelines within the Yichang-Qianjiang section of the Sichuan-East Gas Pipeline,integrating advanced numerical simulation with experimental validation.The research methodology incorporates three distinct parameter grouping approaches:a random group based on statistical analysis of 389 actual corrosion defects detected during 2023 MFL inspection,a deviation group representing historically documented failure scenarios,and a structural group examining systematic parameter variations.Using ABAQUS finite element software,we developed a dynamic implicit analysis model incorporating geometric nonlinearity and validated it through 1:12.7 scaled model testing,achieving prediction deviations consistently within 5%for standard cases.Our analysis revealed distinct failure mechanisms between large and small defects,with large defects exhibiting stress concentration at circumferential edges and small defects concentrating stress centrally.Quantitative analysis identified defect depth as themost significant factor,with every 1mmincrease reducing strength by 0.054MPa,while defect length showed moderate influence at 0.0018MPa reduction per mm.Comparative analysis demonstrated that circumferential defects exhibited 15%higher burst failure pressure compared to axial defects,though this advantage diminished significantly at depths exceeding 40%wall thickness.These findings,validated through experimental testing with deviations within 5%,provide valuable insights for pipeline integrity management,particularly emphasizing the importance of defect depth monitoring and the need for orientation-specific assessment criteria in corrosion evaluation protocols.展开更多
The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a...The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers.展开更多
Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the informa...Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11071018 and 11001016)the Specialized Research Fund for Doctoral Program of Higher Education(Grant No.20100003120003)the Program for Changjiang Scholars and Innovative Research Team in University
文摘We prove that there are only finitely many diffeomorphism types of curvature-adapted equifocal hypersurfaces in a simply connected compact symmetric space.Moreover,if the symmetric space is of rank one,the result can be strengthened by dropping the condition curvature-adapted.
基金The third author is partially supported by National Natural Science Foundation of China (Grant No. 10631060) and Ph.D. grant of the Ministry of Education of China (Grant No. 5171042-055)
文摘By constructing certain maps, this note completes the answer of the question: For which closed orientable 3-manifold N, is the set of mapping degrees D(M, N) finite for any closed orientable 3-manifold M?
基金Supported by the National Natural Science Foundation of China(Grant No.11771129,11971155,12071117).
文摘Let A be a completely decomposable homogeneous torsion-free abelian group of rank n(n≥2).Let m(n)=A×(a)be the split extension of A by an automorphismαwhich is a cyclic permutation of the direct components twisted by a rational integer m.Then Om(n)is an infinite soluble group.In this paper,the residual finiteness of Om(n)is investigated.
文摘Let R be a commutative Noetherian ring, α an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. In this paper, it is shown that dim Supp Hi a(M) ≤ 1 for all i 〈 t if and only if there exists an ideal b of R such that dimR/b ≤ 1 and Hia(M) ≌ Hi b(M) for all i 〈 t. Moreover, we prove that dimSuppHia(M) 〈≤dim M - i for all i.
文摘Theπ2-diffeomorphism finiteness result of F.Fang-X.Rong and A.Petrunin-W.Tuschmann(independently)asserts that the diffeomorphic types of compact n-manifolds M with vanishing first and second homotopy groups can be bounded above in terms of n,and upper bounds on the absolute value of sectional curvature and diameter of M.In this paper,we will generalize thisπ2-diffeomorphism finiteness by removing the condition thatπ1(M)-0 and asserting the diffeomorphism finiteness on the Riemannian universal cover of M.
文摘Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, m). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t≥ 0 is an integer and p C Supp H^t_p (M), then Hm^t+dim R/p (M) is not p-cofinite. Then we obtain a partial answer to a question raised by Huneke. Namely, if R is a complete local ring, then H^n_m (M) is finitely generated if and only if 0 ≤ n ¢ W, where W ---- {t + dimR/p丨p ∈ SuppH^t_p(M)/V(m)}. Also, we show that if J C I are 1-dimensional ideals of R, then H^t_I(M) is J-cominimax, and H^t_I(M) is finitely generated (resp., minimax) if and only if H}R, (Mp) is finitely generated for all p C Spec R (resp., p ∈ SpecR/MaxR). Moreover, the concept of the J-cofiniteness dimension cJ(M) of M relative to I is introduced, and we explore an interrelation between c^I_m(M) and the filter depth of M in I. Finally, we show that if R is complete and dim M/IM ≠ 0, then c^I_m (R) ---- inf{depth Mp + dim R/p 丨 P ∈ Supp M/IM/V(m)}.
文摘Necessary and sufficient conditions are given for the finiteness of the generalized exponents expD(k), f(D, k) and F(D, k) for digraphs which are not necessarily primitive. Also the largest finite value of the generalized exponent expD(k) for digraphs of order n is determined and the complete characterizations of the extreme digraphs are given.
基金supported by Korean Research Foundation funded by the Korean Government (Grant No. KRF-2007-313-C00015)The second author was supported by Natural Science and Engineering Research Council of Canada (Grant No. A-4064)
文摘We prove that certain 1-relator groups have Property E. Using this fact, we characterize all conjugacy separable 1-relator groups of the form a,b;(a-αbβaαbγ)t , t 1, having residually finite outer automorphism groups.
文摘Some singular characteristics of analytic functions with positive definiteness are considered. To avoid these singular cases, the finite truncate condition is proposed. When the finite truncate condition is satisfied, the positive definiteness of an analytic function can be judged by the partial sum of its Taylor series, i e , by a polynomial. This discussion will be useful in the construction of Lyapunov functions for nonlinear systems.
基金supported by the National Natural Science Foundation of China(No.51905123)Major Scientific and Technological Innovation Program of Shandong Province,China(Nos.2020CXGC010303,2022ZLGX04)Key R&D Programme of Shandong Province,China(No.2022JMRH0308).
文摘An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.
基金supported by National Key R&D Program of China(Grant No.2022YFB4600500)Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province of China(Grant No.2023-CX-TD-17).
文摘In engineering,the demand for high energy absorption by structures subjected to impact loads is increasing.Balancing the limited space,manufacturing feasibility,and energy absorption capabilities is a key point in the design of many enclosed structures with energy absorption requirements.To achieve a lightweight design and controllable energy absorption by the structures,within a limited space,this study proposes a bio-inspired double-layer impact-resistant structure that can be manufactured by an additive manufacturing method(powder bed fusion),inspired by the microstructure of a woodpecker’s head.The structure is composed of two basic structural units:a quasi-circular ring and an oblique cylinder.The controllable energy absorption capabilities of the structure were studied through a combination of theoretical analyses,numerical simulations,and physical experiments.The results showed that,for the quasi-circular ring structure,the specific energy absorption range of 13-72 J/g could be effectively regulated by adjusting the structural parameters.The specific energy absorption range of 11-137 J/g could be effectively regulated for oblique cylindrical structures.Finally,the structure was applied to the design of engineering impact-resistant devices,proving the effectiveness of the controllable energy absorption of the structure.Moreover,the design process of the structure was optimized,laying a foundation for the structure to better serve engineering design applications.
基金supported by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.Q2023J012).
文摘Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3009400)the National Natural Science Foundation of China(Grant Nos.42307218 and U2239251).
文摘The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project.
文摘Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for these complex cases.This article explores the integration of finite element analysis(FEA)to enhance surgical precision and outcomes.FEA provides detailed biomechanical insights,aiding in preoperative planning,implant design,and surgical technique optimization.By simulating implant configurations and assessing bone quality,FEA helps in customizing implants and evaluating surgical techniques like subtrochanteric shortening osteotomy.Advanced imaging techniques,such as 3D printing,virtual reality,and augmented reality,further enhance total hip arthroplasty precision.Future research should focus on validating FEA models,developing patient-specific simulations,and promoting multidisciplinary collaboration.Integrating FEA and advanced technologies in total hip arthroplasty can improve functional outcomes,reduce complications,and enhance quality of life for patients with childhood hip disorder sequelae.
基金the financial support from the Fujian Science Foundation for Outstanding Youth(2023J06039)the National Natural Science Foundation of China(Grant No.41977259,U2005205,41972268)the Independent Research Project of Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China(KY-090000-04-2022-019)。
文摘Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.
基金supported by the National Key Research and Development Program Project(2021YFC2400203)the Shaanxi Province Key Research and Development Program Project(2023-YBSF-120)+1 种基金the Shandong Provincial Natural Science Foundation(ZR2024QF287)the National Natural Science Foundation of China(31972907).
文摘Temporal interference(TI)is a form of stimulation that epitomizes an innovative and non-invasive approach for profound neuromodulation of the brain,a technique that has been validated in mice.Yet,the thin cranial bone structure of mice has a marginal influence on the effect of the TI technique and may not effectively showcase its effectiveness in larger animals.Based on this,we carried out TI stimulation experiments on rats.Following the TI intervention,analysis of electrophysiological data and immunofluorescence staining indicated the generation of a stimulation focus within the nucleus accumbens(depth,8.5 mm)in rats.Our findings affirm the viability of the TI methodology in the presence of thick cranial bones,furnishing efficacious parameters for profound stimulation with TI administered under such conditions.This experiment not only sheds light on the intervention effects of TI deep in the brain but also furnishes robust evidence in support of its prospective clinical utility.
文摘This study presents a comprehensive investigation of residual strength in corroded pipelines within the Yichang-Qianjiang section of the Sichuan-East Gas Pipeline,integrating advanced numerical simulation with experimental validation.The research methodology incorporates three distinct parameter grouping approaches:a random group based on statistical analysis of 389 actual corrosion defects detected during 2023 MFL inspection,a deviation group representing historically documented failure scenarios,and a structural group examining systematic parameter variations.Using ABAQUS finite element software,we developed a dynamic implicit analysis model incorporating geometric nonlinearity and validated it through 1:12.7 scaled model testing,achieving prediction deviations consistently within 5%for standard cases.Our analysis revealed distinct failure mechanisms between large and small defects,with large defects exhibiting stress concentration at circumferential edges and small defects concentrating stress centrally.Quantitative analysis identified defect depth as themost significant factor,with every 1mmincrease reducing strength by 0.054MPa,while defect length showed moderate influence at 0.0018MPa reduction per mm.Comparative analysis demonstrated that circumferential defects exhibited 15%higher burst failure pressure compared to axial defects,though this advantage diminished significantly at depths exceeding 40%wall thickness.These findings,validated through experimental testing with deviations within 5%,provide valuable insights for pipeline integrity management,particularly emphasizing the importance of defect depth monitoring and the need for orientation-specific assessment criteria in corrosion evaluation protocols.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U1906233 and 52201312)Dalian High-Level Talent Innovation Program(Grant No.2021RD16)the Natural Science Foundation of Liaoning Province of China(Grant No.2023-BSBA-052).
文摘The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers.
文摘Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well.