为探索国产高分一号宽幅(GF-1 Wide Field of View,GF-1 WFV)数据以及具有宽覆盖、红边波段(Red-Edge band,RE)的高分六号(GF-6)卫星数据在森林郁闭度(Forest Canopy Closure,FCC)定量反演中的潜力,本研究以GF-1 WFV多光谱数据为基础,...为探索国产高分一号宽幅(GF-1 Wide Field of View,GF-1 WFV)数据以及具有宽覆盖、红边波段(Red-Edge band,RE)的高分六号(GF-6)卫星数据在森林郁闭度(Forest Canopy Closure,FCC)定量反演中的潜力,本研究以GF-1 WFV多光谱数据为基础,添加哨兵2号(Sentinel-2A)红边波段,模拟GF-6红边波段特性,并提取相关纹理信息(Texture Information,TI)、植被指数(Vegetation Index,VI)和红边指数(Red-edge Index,RI),同时添加太阳入射角的余弦值cosi和1/cosi进一步探究了地形因素(Topographic Factors,TF)对FCC估测的影响,利用快速迭代特征选择的k-NN(kNearest Neighbor with Fast Iterative Features Selection,KNN-FIFS)模型,实现了内蒙古大兴安岭根河研究区FCC的定量反演,并对比逐步多元线性回归(Stepwise Multiple Linear Regressions,SMLR)和支持向量机(Support Vector Machine,SVM)估测结果。通过44块调查样地实测数据验证发现:基于GF-1 WFV估测的FCC与实测数据具有很好的一致性,R2=0.52,RMSE=0.08;GF-1 WFV+VI+TI估测结果为R2=0.56,RMSE=0.08;GF-1 WFV+RE+RI+TI的精度明显提高,R2=0.63,RMSE=0.07;GF-1 WFV+RE+RI+TI+TF的精度最高,R2=0.68,RMSE=0.07,并高于SMLR(R2=0.39,RMSE=0.10)和SVM(R2=0.49,RMSE=0.10)方法。KNN-FIFS方法比SMLR和SVM方法更适用于FCC遥感估测,且添加红边信息经地形校正后,能有效提高FCC的估测精度。展开更多
基金This program was financially supported in part by the National High Technology Research and Development Program of China(863 Program)(2004AA211172),The National Basic Research Program(973 Program)(2002CB111301),the Key Project of Chinese Ministry of Education(10418),and the program for Changjiang scholars and the innovative research teams in universities.
文摘为探索国产高分一号宽幅(GF-1 Wide Field of View,GF-1 WFV)数据以及具有宽覆盖、红边波段(Red-Edge band,RE)的高分六号(GF-6)卫星数据在森林郁闭度(Forest Canopy Closure,FCC)定量反演中的潜力,本研究以GF-1 WFV多光谱数据为基础,添加哨兵2号(Sentinel-2A)红边波段,模拟GF-6红边波段特性,并提取相关纹理信息(Texture Information,TI)、植被指数(Vegetation Index,VI)和红边指数(Red-edge Index,RI),同时添加太阳入射角的余弦值cosi和1/cosi进一步探究了地形因素(Topographic Factors,TF)对FCC估测的影响,利用快速迭代特征选择的k-NN(kNearest Neighbor with Fast Iterative Features Selection,KNN-FIFS)模型,实现了内蒙古大兴安岭根河研究区FCC的定量反演,并对比逐步多元线性回归(Stepwise Multiple Linear Regressions,SMLR)和支持向量机(Support Vector Machine,SVM)估测结果。通过44块调查样地实测数据验证发现:基于GF-1 WFV估测的FCC与实测数据具有很好的一致性,R2=0.52,RMSE=0.08;GF-1 WFV+VI+TI估测结果为R2=0.56,RMSE=0.08;GF-1 WFV+RE+RI+TI的精度明显提高,R2=0.63,RMSE=0.07;GF-1 WFV+RE+RI+TI+TF的精度最高,R2=0.68,RMSE=0.07,并高于SMLR(R2=0.39,RMSE=0.10)和SVM(R2=0.49,RMSE=0.10)方法。KNN-FIFS方法比SMLR和SVM方法更适用于FCC遥感估测,且添加红边信息经地形校正后,能有效提高FCC的估测精度。